Nutritional intake of micronutrient and macronutrient and type 2 diabetes: machine learning schemes

被引:0
作者
Rashidmayvan, Mohammad [1 ]
Mansoori, Amin [2 ]
Derakhshan-Nezhad, Elahe [3 ,11 ]
Tanbakuchi, Davoud [4 ]
Sangin, Fatemeh [5 ]
Mohammadi-Bajgiran, Maryam [6 ]
Abedsaeidi, Malihehsadat [7 ]
Ghazizadeh, Sara [8 ]
Sarabi, MohammadReza Mohammad Taghizadeh [8 ]
Rezaee, Ali [8 ,12 ]
Ferns, Gordon [9 ]
Esmaily, Habibollah [4 ,10 ]
Ghayour-Mobarhan, Majid [6 ]
机构
[1] Gonabad Univ Med Sci, Sch Med, Dept Nutr Food Sci & Clin Biochem, Social Determinants Hlth Res Ctr, Gonabad, Iran
[2] Ferdowsi Univ Mashhad, Sch Math Sci, Dept Appl Math, Mashhad, Iran
[3] Islamic Azad Univ, Mashhad Branch, Mashhad, Iran
[4] Mashhad Univ Med Sci, Sch Hlth, Dept Biostat, Mashhad, Iran
[5] Ferdowsi Univ Mashhad, Ctr Excellence Soft Comp & Intelligent Informat Pr, Dept Comp Engn, Mashhad, Iran
[6] Mashhad Univ Med Sci, Int UNESCO Ctr Hlth Related Basic Sci & Human Nutr, Mashhad, Iran
[7] Ferdowsi Univ Mashhad, Fac Vet Med, Dept Basic Sci, Mashhad, Iran
[8] Islamic Azad Univ, Dept Biol, Mashhad Branch, Mashhad 1696700, Iran
[9] Brighton & Sussex Med Sch, Div Med Educ, Brighton, England
[10] Mashhad Univ Med Sci, Social Determinants Hlth Res Ctr, Mashhad 9188986773, Iran
[11] Mashhad Univ Med Sci, Student Res Comm, Fac Med, Mashhad, Iran
[12] Mazandaran Univ Med Sci, Student Res Comm, Sari, Iran
关键词
Data mining; Diabetes; Macro/Micronutrients; Decision tree; VITAMIN-D; INSULIN-RESISTANCE; MAGNESIUM INTAKE; BLOOD-PRESSURE; IRON INTAKE; RISK; MELLITUS; ADULTS; ZINC; HYPERTENSION;
D O I
10.1186/s41043-024-00712-2
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Background Diabetes mellitus, an endocrine system disease, is a common disease involving many patients worldwide. Many studies are performed to evaluate the correlation between micronutrients/macronutrients on diabetes but few of them have a high statistical population and a long follow-up period. We aimed to investigate the relationship between intake of macro/micronutrients and the incidence of type 2 diabetes (T2D) using logistic regression (LR) and a decision tree (DT) algorithm for machine learning. Method Our research explores supervised machine learning models to identify T2D patients using the Mashhad Cohort Study dataset. The study population comprised 9704 individuals aged 35-65 years were enrolled regarding their T2D status, and those with T2D history. 15% of individuals are diabetic and 85% of them are non-diabetic. For ten years (until 2020), the participants in the study were monitored to determine the incidence of T2D. LR is a statistical model applied in dichotomous response variable modeling. All data were analyzed by SPSS (Version 22) and SAS JMP software. Result Nutritional intake in the T2D group showed that potassium, calcium, magnesium, zinc, iodine, carotene, vitamin D, tryptophan, and vitamin B12 had an inverse correlation with the incidence of diabetes (p < 0.05). While phosphate, iron, and chloride had a positive relationship with the risk of T2D (p < 0.05). Also, the T2D group significantly had higher carbohydrate and protein intake (p-value < 0.05). Conclusion Machine learning models can identify T2D risk using questionnaires and blood samples. These have implications for electronic health records that can be explored further.
引用
收藏
页数:11
相关论文
共 71 条
  • [51] Salt intake among Iranian population: the first national report on salt intake in Iran
    Rezaei, Shahabeddin
    Mahmoudi, Zohreh
    Sheidaei, Ali
    Aryan, Zahra
    Mahmoudi, Negar
    Gohari, Kimiya
    Yoosefi, Moein
    Hajipour, Mohammad J.
    Dilmaghani-Marand, Arezou
    Soleimanzadehkhayat, Mojdeh
    Gholami, Ali
    Samiee, Siamak Mirab
    Moradi, Ghobad
    Larijani, Bagher
    Farzadfar, Farshad
    [J]. JOURNAL OF HYPERTENSION, 2018, 36 (12) : 2380 - 2389
  • [52] Data mining approaches for type 2 diabetes mellitus prediction using anthropometric measurements
    Saberi-Karimian, Maryam
    Mansoori, Amin
    Bajgiran, Maryam Mohammadi
    Hosseini, Zeinab Sadat
    Kiyoumarsioskouei, Amir
    Rad, Elias Sadooghi
    Zo, Mostafa Mahmoudi
    Khorasani, Negar Yeganeh
    Poudineh, Mohadeseh
    Ghazizadeh, Sara
    Ferns, Gordon
    Esmaily, Habibollah
    Ghayour-Mobarhan, Majid
    [J]. JOURNAL OF CLINICAL LABORATORY ANALYSIS, 2023, 37 (01)
  • [53] Effects on blood pressure of reduced dietary sodium and the dietary approaches to stop hypertension (DASH) diet.
    Sacks, FM
    Svetkey, LP
    Vollmer, WM
    Appel, LJ
    Bray, GA
    Harsha, D
    Obarzanek, E
    Conlin, PR
    Miller, ER
    Simons-Morton, DG
    Karanja, N
    Lin, PH
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2001, 344 (01) : 3 - 10
  • [54] Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition
    Saeedi, Pouya
    Petersohn, Inga
    Salpea, Paraskevi
    Malanda, Belma
    Karuranga, Suvi
    Unwin, Nigel
    Colagiuri, Stephen
    Guariguata, Leonor
    Motala, Ayesha A.
    Ogurtsova, Katherine
    Shaw, Jonathan E.
    Bright, Dominic
    Williams, Rhys
    Almutairi, Reem
    Montoya, Pablo Aschner
    Basit, Abdul
    Besancon, Stephane
    Bommer, Christian
    Borgnakke, Wenche
    Boyko, Edward
    Chan, Juliana
    Divakar, Hema
    Esteghamati, Alireza
    Forouhi, Nita
    Franco, Laercio
    Gregg, Edward
    Hassanein, Mohamed
    Ke, Calvin
    Levitt, Dinky
    Lim, Lee-Ling
    Ogle, Graham D.
    Owens, David
    Pavkov, Meda
    Pearson-Stuttard, Jonathan
    Ramachandran, Ambady
    Rathmann, Wolfgang
    Riaz, Musarrat
    Simmons, David
    Sinclair, Alan
    Sobngwi, Eugene
    Thomas, Rebecca
    Ward, Heather
    Wild, Sarah
    Yang, Xilin
    Yuen, Lili
    Zhang, Ping
    [J]. DIABETES RESEARCH AND CLINICAL PRACTICE, 2019, 157
  • [55] Zinc and diabetes mellitus - Is there a need of zinc supplementation in diabetes mellitus patients?
    Salgueiro, MJ
    Krebs, N
    Zubillaga, MB
    Weill, R
    Postaire, E
    Lysionek, AE
    Caro, RA
    De Paoli, T
    Hager, A
    Boccio, J
    [J]. BIOLOGICAL TRACE ELEMENT RESEARCH, 2001, 81 (03) : 215 - 228
  • [56] Fiber and magnesium intake and incidence of type 2 diabetes - A prospective study and meta-analysis
    Schulze, Matthias B.
    Schulz, Mandy
    Heidemann, Christin
    Schienkiewitz, Anja
    Hoffmann, Kurt
    Boeing, Heiner
    [J]. ARCHIVES OF INTERNAL MEDICINE, 2007, 167 (09) : 956 - 965
  • [57] Variation in Macro and Trace Elements in Progression of Type 2 Diabetes
    Siddiqui, Khalid
    Bawazeer, Nahla
    Joy, Salini Scaria
    [J]. SCIENTIFIC WORLD JOURNAL, 2014,
  • [58] Song Yan-Yan, 2015, Shanghai Arch Psychiatry, V27, P130, DOI 10.11919/j.issn.1002-0829.215044
  • [59] Sperandei S, 2014, BIOCHEM MEDICA, V24, P12, DOI 10.11613/BM.2014.003
  • [60] IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045
    Sun, Hong
    Saeedi, Pouya
    Karuranga, Suvi
    Pinkepank, Moritz
    Ogurtsova, Katherine
    Duncan, Bruce B.
    Stein, Caroline
    Basit, Abdul
    Chan, Juliana C. N.
    Mbanya, Jean Claude
    Pavkov, Meda E.
    Ramachandaran, Ambady
    Wild, Sarah H.
    James, Steven
    Herman, William H. H.
    Zhang, Ping
    Bommer, Christian
    Kuo, Shihchen
    Boyko, Edward J. J.
    Magliano, Dianna J.
    [J]. DIABETES RESEARCH AND CLINICAL PRACTICE, 2022, 183