Automated characterisation of cerebral microbleeds using their size and spatial distribution on brain MRI

被引:0
|
作者
Sundaresan, Vaanathi [1 ]
Zamboni, Giovanna [2 ,3 ]
Dineen, Robert A. [4 ,5 ]
Auer, Dorothee P. [4 ,5 ]
Sotiropoulos, Stamatios N. [2 ,4 ,6 ]
Sprigg, Nikola [5 ]
Jenkinson, Mark [2 ,6 ,7 ]
Griffanti, Ludovica [2 ,6 ,8 ]
机构
[1] Indian Inst Sci, Dept Computat & Data Sci, Bengaluru 560012, Karnataka, India
[2] Univ Oxford, Nuffield Dept Clin Neurosci, Oxford OX3 9DU, England
[3] Univ Modena & Reggio Emilia, Dipartimento Sci Biomed Metab & Neurosci, I-41121 Modena, Italy
[4] Univ Nottingham, Natl Inst Hlth & Care Res NIHR, Nottingham Biomed Res Ctr, Queens Med Ctr,Sir Peter Mansfield Imaging Ctr, Nottingham NG7 2RD, England
[5] Univ Nottingham, Sch Med, Radiol Sci Mental Hlth & Clin Neurosci, Nottingham NG7 2RD, England
[6] Univ Oxford, Wellcome Ctr Integrat Neuroimaging, Oxford OX3 9DU, England
[7] Univ Adelaide, South Australian Hlth & Med Res Inst SAHMRI, Australian Inst Machine Learning, Sch Comp & Math Sci, Adelaide, SA 5005, Australia
[8] Univ Oxford, Dept Psychiat, Oxford OX3 7JX, England
关键词
Brain; Cerebral haemorrhage; Cerebrovascular disorders; Hemosiderin; Magnetic resonance imaging; ROBUST; MODEL;
D O I
10.1186/s41747-024-00544-z
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Cerebral microbleeds (CMBs) are small, hypointense hemosiderin deposits in the brain measuring 2-10 mm in diameter. As one of the important biomarkers of small vessel disease, they have been associated with various neurodegenerative and cerebrovascular diseases. Hence, automated detection, and subsequent extraction of clinically useful metrics (e.g., size and spatial distribution) from CMBs are essential for investigating their clinical impact, especially in large-scale studies. While some work has been done for CMB segmentation, extraction of clinically relevant information is not yet explored. Herein, we propose the first automated method to characterise CMBs using their size and spatial distribution, i.e., CMB count in three regions (and their substructures) used in Microbleed Anatomical Rating Scale (MARS): infratentorial, deep, and lobar. Our method uses structural atlases of the brain for determining individual regions. On an intracerebral haemorrhage study dataset, we achieved a mean absolute error of 2.5 mm for size estimation and an overall accuracy > 90% for automated rating. The code and the atlas of MARS regions in Montreal Neurological Institute-MNI space are publicly available.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] PFP-HOG: Pyramid and Fixed-Size Patch-Based HOG Technique for Automated Brain Abnormality Classification with MRI
    Kaplan, Ela
    Chan, Wai Yee
    Altinsoy, Hasan Baki
    Baygin, Mehmet
    Barua, Prabal Datta
    Chakraborty, Subrata
    Dogan, Sengul
    Tuncer, Turker
    Acharya, U. Rajendra
    JOURNAL OF DIGITAL IMAGING, 2023, 36 (06) : 2441 - 2460
  • [42] MRI measurement of oxygen extraction fraction, mean vessel size and cerebral blood volume using serial hyperoxia and hypercapnia
    Germuska, Michael
    Bulte, Daniel P.
    NEUROIMAGE, 2014, 92 : 132 - 142
  • [43] MRI size assessment of cerebral microvasculature using diffusion -time -dependent stimulated -echo acquisition: A feasibility study in rodent
    Lee, D. K.
    Kang, M. S.
    Cho, H.
    NEUROIMAGE, 2020, 215
  • [44] Characterisation of microvessel blood velocity and segment length in the brain using multi-diffusion-time diffusion-weighted MRI
    Scott, Lauren A.
    Dickie, Ben R.
    Rawson, Shelley D.
    Coutts, Graham
    Burnett, Timothy L.
    Allan, Stuart M.
    Parker, Geoff J. M.
    Parkes, Laura M.
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2021, 41 (08) : 1939 - 1953
  • [45] Enhancing the spatial resolution of hyperpolarized carbon-13 MRI of human brain metabolism using structure guidance
    Ehrhardt, Matthias J.
    Gallagher, Ferdia A.
    McLean, Mary A.
    Schoenlieb, Carola-Bibiane
    MAGNETIC RESONANCE IN MEDICINE, 2022, 87 (03) : 1301 - 1312
  • [46] Fully automatic MRI brain tumor segmentation using efficient spatial attention convolutional networks with composite loss
    Mazumdar, Indrajit
    Mukherjee, Jayanta
    NEUROCOMPUTING, 2022, 500 : 243 - 254
  • [47] Fully automatic MRI brain tumor segmentation using efficient spatial attention convolutional networks with composite loss
    Mazumdar, Indrajit
    Mukherjee, Jayanta
    Neurocomputing, 2022, 500 : 243 - 254
  • [48] A semi-automated segmentation framework for MRI based brain tumor segmentation using regularized nonnegative matrix factorization
    Sauwen, Nicolas
    Sima, Diana M.
    Acou, Marjan
    Achten, Eric
    Maes, Frederik
    Himmelreich, Uwe
    Van Huffel, Sabine
    2016 12TH INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY & INTERNET-BASED SYSTEMS (SITIS), 2016, : 88 - 95
  • [49] Using multiple imputation to efficiently correct cerebral MRI whole brain lesion and atrophy data in patients with multiple sclerosis
    Chua, Alicia S.
    Egorova, Svetlana
    Anderson, Mark C.
    Polgar-Turcsanyi, Mariann
    Chitnis, Tanuja
    Weiner, Howard L.
    Guttmann, Charles R. G.
    Bakshi, Rohit
    Healy, Brian C.
    NEUROIMAGE, 2015, 119 : 81 - 88
  • [50] An Automated 2D U-Net Segmentation Method for the Identification of Cancer Brain Metastases Using MRI Images
    Tzardis, Vangelis
    Kyriacou, Efthyvoulos
    Loizou, Christos P.
    Constantinidou, Anastasia
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS. AIAI 2022 IFIP WG 12.5 INTERNATIONAL WORKSHOPS, 2022, 652 : 161 - 173