Automated characterisation of cerebral microbleeds using their size and spatial distribution on brain MRI

被引:0
|
作者
Sundaresan, Vaanathi [1 ]
Zamboni, Giovanna [2 ,3 ]
Dineen, Robert A. [4 ,5 ]
Auer, Dorothee P. [4 ,5 ]
Sotiropoulos, Stamatios N. [2 ,4 ,6 ]
Sprigg, Nikola [5 ]
Jenkinson, Mark [2 ,6 ,7 ]
Griffanti, Ludovica [2 ,6 ,8 ]
机构
[1] Indian Inst Sci, Dept Computat & Data Sci, Bengaluru 560012, Karnataka, India
[2] Univ Oxford, Nuffield Dept Clin Neurosci, Oxford OX3 9DU, England
[3] Univ Modena & Reggio Emilia, Dipartimento Sci Biomed Metab & Neurosci, I-41121 Modena, Italy
[4] Univ Nottingham, Natl Inst Hlth & Care Res NIHR, Nottingham Biomed Res Ctr, Queens Med Ctr,Sir Peter Mansfield Imaging Ctr, Nottingham NG7 2RD, England
[5] Univ Nottingham, Sch Med, Radiol Sci Mental Hlth & Clin Neurosci, Nottingham NG7 2RD, England
[6] Univ Oxford, Wellcome Ctr Integrat Neuroimaging, Oxford OX3 9DU, England
[7] Univ Adelaide, South Australian Hlth & Med Res Inst SAHMRI, Australian Inst Machine Learning, Sch Comp & Math Sci, Adelaide, SA 5005, Australia
[8] Univ Oxford, Dept Psychiat, Oxford OX3 7JX, England
关键词
Brain; Cerebral haemorrhage; Cerebrovascular disorders; Hemosiderin; Magnetic resonance imaging; ROBUST; MODEL;
D O I
10.1186/s41747-024-00544-z
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Cerebral microbleeds (CMBs) are small, hypointense hemosiderin deposits in the brain measuring 2-10 mm in diameter. As one of the important biomarkers of small vessel disease, they have been associated with various neurodegenerative and cerebrovascular diseases. Hence, automated detection, and subsequent extraction of clinically useful metrics (e.g., size and spatial distribution) from CMBs are essential for investigating their clinical impact, especially in large-scale studies. While some work has been done for CMB segmentation, extraction of clinically relevant information is not yet explored. Herein, we propose the first automated method to characterise CMBs using their size and spatial distribution, i.e., CMB count in three regions (and their substructures) used in Microbleed Anatomical Rating Scale (MARS): infratentorial, deep, and lobar. Our method uses structural atlases of the brain for determining individual regions. On an intracerebral haemorrhage study dataset, we achieved a mean absolute error of 2.5 mm for size estimation and an overall accuracy > 90% for automated rating. The code and the atlas of MARS regions in Montreal Neurological Institute-MNI space are publicly available.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] ESTIMATING FIBER ORIENTATION DISTRIBUTION WITH APPLICATION TO STUDY BRAIN LATERALIZATION USING HCP D-MRI DATA
    Hwang, Seungyong
    Lee, Thomas C. M.
    Paul, Debashis
    Peng, Jie
    ANNALS OF APPLIED STATISTICS, 2024, 18 (01) : 100 - 124
  • [22] MEASUREMENT OF INFARCT SIZE USING MRI PREDICTS PROGNOSIS IN MIDDLE CEREBRAL-ARTERY INFARCTION
    SAUNDERS, DE
    CLIFTON, AG
    BROWN, MM
    STROKE, 1995, 26 (12) : 2272 - 2276
  • [23] Segmentation of MRI brain scans using spatial constraints and 3D features
    Grande-Barreto, Jonas
    Gomez-Gil, Pilar
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2020, 58 (12) : 3101 - 3112
  • [24] Automated classification of brain MRI reports using fine-tuned large language models
    Kanzawa, Jun
    Yasaka, Koichiro
    Fujita, Nana
    Fujiwara, Shin
    Abe, Osamu
    NEURORADIOLOGY, 2024, 66 (12) : 2177 - 2183
  • [25] Automated brain tumor recognition using equilibrium optimizer with deep learning approach on MRI images
    Ragab, Mahmoud
    Katib, Iyad
    Sharaf, Sanaa A.
    Alterazi, Hassan A.
    Subahi, Alanoud
    Alattas, Sana G.
    Binyamin, Sami Saeed
    Alyami, Jaber
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [26] Automated detection and quantification of brain metastases on clinical MRI data using artificial neural networks
    Pfluger, Irada
    Wald, Tassilo
    Isensee, Fabian
    Schell, Marianne
    Meredig, Hagen
    Schlamp, Kai
    Bernhardt, Denise
    Brugnara, Gianluca
    Heussel, Claus Peter
    Debus, Juergen
    Wick, Wolfgang
    Bendszus, Martin
    Maier-Hein, Klaus H.
    Vollmuth, Philipp
    NEURO-ONCOLOGY ADVANCES, 2022, 4 (01)
  • [27] Automated Detection of Alzheimer's Disease and Mild Cognitive Impairment Using Whole Brain MRI
    Faisal, Fazal Ur Rehman
    Kwon, Goo-Rak
    IEEE ACCESS, 2022, 10 : 65055 - 65066
  • [28] A Fully-Automated Detection of Brain Tumor in MRI Images using Input Cascaded CNN
    Dheepa, G.
    Chithra, P. L.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2020, 15 (04) : 1193 - 1197
  • [29] Characterisation of Endothelin-1-Induced Intrastriatal Lesions Within the Juvenile and Adult Rat Brain Using MRI and 31P MRS
    Raman Saggu
    Translational Stroke Research, 2013, 4 : 351 - 367
  • [30] Automated MRI brain tissue segmentation based on mean shift and fuzzy c-means using a priori tissue probability maps
    Mahmood, Q.
    Chodorowski, A.
    Persson, M.
    IRBM, 2015, 36 (03) : 185 - 196