Automated characterisation of cerebral microbleeds using their size and spatial distribution on brain MRI

被引:0
|
作者
Sundaresan, Vaanathi [1 ]
Zamboni, Giovanna [2 ,3 ]
Dineen, Robert A. [4 ,5 ]
Auer, Dorothee P. [4 ,5 ]
Sotiropoulos, Stamatios N. [2 ,4 ,6 ]
Sprigg, Nikola [5 ]
Jenkinson, Mark [2 ,6 ,7 ]
Griffanti, Ludovica [2 ,6 ,8 ]
机构
[1] Indian Inst Sci, Dept Computat & Data Sci, Bengaluru 560012, Karnataka, India
[2] Univ Oxford, Nuffield Dept Clin Neurosci, Oxford OX3 9DU, England
[3] Univ Modena & Reggio Emilia, Dipartimento Sci Biomed Metab & Neurosci, I-41121 Modena, Italy
[4] Univ Nottingham, Natl Inst Hlth & Care Res NIHR, Nottingham Biomed Res Ctr, Queens Med Ctr,Sir Peter Mansfield Imaging Ctr, Nottingham NG7 2RD, England
[5] Univ Nottingham, Sch Med, Radiol Sci Mental Hlth & Clin Neurosci, Nottingham NG7 2RD, England
[6] Univ Oxford, Wellcome Ctr Integrat Neuroimaging, Oxford OX3 9DU, England
[7] Univ Adelaide, South Australian Hlth & Med Res Inst SAHMRI, Australian Inst Machine Learning, Sch Comp & Math Sci, Adelaide, SA 5005, Australia
[8] Univ Oxford, Dept Psychiat, Oxford OX3 7JX, England
关键词
Brain; Cerebral haemorrhage; Cerebrovascular disorders; Hemosiderin; Magnetic resonance imaging; ROBUST; MODEL;
D O I
10.1186/s41747-024-00544-z
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Cerebral microbleeds (CMBs) are small, hypointense hemosiderin deposits in the brain measuring 2-10 mm in diameter. As one of the important biomarkers of small vessel disease, they have been associated with various neurodegenerative and cerebrovascular diseases. Hence, automated detection, and subsequent extraction of clinically useful metrics (e.g., size and spatial distribution) from CMBs are essential for investigating their clinical impact, especially in large-scale studies. While some work has been done for CMB segmentation, extraction of clinically relevant information is not yet explored. Herein, we propose the first automated method to characterise CMBs using their size and spatial distribution, i.e., CMB count in three regions (and their substructures) used in Microbleed Anatomical Rating Scale (MARS): infratentorial, deep, and lobar. Our method uses structural atlases of the brain for determining individual regions. On an intracerebral haemorrhage study dataset, we achieved a mean absolute error of 2.5 mm for size estimation and an overall accuracy > 90% for automated rating. The code and the atlas of MARS regions in Montreal Neurological Institute-MNI space are publicly available.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Spatial distribution of cerebral microbleeds reveals heterogeneous pathogenesis in CADASIL
    Chen, Ya-Fang
    Chen, Chih-Hao
    Wu, Wen-Chau
    Lee, Bo-Ching
    Tsai, Hsin-Hsi
    Tang, Sung-Chun
    EUROPEAN RADIOLOGY, 2022, 32 (03) : 1951 - 1958
  • [2] Automated detection of cerebral microbleeds in patients with traumatic brain injury
    van den Heuvel, T. L. A.
    van der Eerden, A. W.
    Manniesing, R.
    Ghafoorian, M.
    Tan, T.
    Andriessen, T. M. J. C.
    Vyvere, T. Vande
    van den Hauwe, L.
    Romeny, B. M. ter Haar
    Goraj, B. M.
    Platel, B.
    NEUROIMAGE-CLINICAL, 2016, 12 : 241 - 251
  • [3] Spatial distribution of cerebral microbleeds reveals heterogeneous pathogenesis in CADASIL
    Ya-Fang Chen
    Chih-Hao Chen
    Wen-Chau Wu
    Bo-Ching Lee
    Hsin-Hsi Tsai
    Sung-Chun Tang
    European Radiology, 2022, 32 : 1951 - 1958
  • [4] Automated detection of cerebral microbleeds on MR images using knowledge distillation framework
    Sundaresan, Vaanathi
    Arthofer, Christoph
    Zamboni, Giovanna
    Murchison, Andrew G. G.
    Dineen, Robert A. A.
    Rothwell, Peter M. M.
    Auer, Dorothee P. P.
    Wang, Chaoyue
    Miller, Karla L. L.
    Tendler, Benjamin C. C.
    Alfaro-Almagro, Fidel
    Sotiropoulos, Stamatios N. N.
    Sprigg, Nikola
    Griffanti, Ludovica
    Jenkinson, Mark
    FRONTIERS IN NEUROINFORMATICS, 2023, 17
  • [5] Quantification of Phase Values of Cerebral Microbleeds in Hypertensive Patients Using ESWAN MRI
    Guo, L. F.
    Geng, J.
    Qiu, M. H.
    Mao, C. H.
    Liu, C.
    Cui, L.
    CLINICAL NEURORADIOLOGY, 2013, 23 (03) : 197 - 205
  • [6] Quantification of Phase Values of Cerebral Microbleeds in Hypertensive Patients Using ESWAN MRI
    L. F. Guo
    J. Geng
    M.H. Qiu
    C.H. Mao
    C. Liu
    L. Cui
    Clinical Neuroradiology, 2013, 23 : 197 - 205
  • [7] Automated analysis of low-field brain MRI in cerebral malaria
    Tu, Danni
    Goyal, Manu S.
    Dworkin, Jordan D.
    Kampondeni, Samuel
    Vidal, Lorenna
    Biondo-Savin, Eric
    Juvvadi, Sandeep
    Raghavan, Prashant
    Nicholas, Jennifer
    Chetcuti, Karen
    Clark, Kelly
    Robert-Fitzgerald, Timothy
    Satterthwaite, Theodore D.
    Yushkevich, Paul
    Davatzikos, Christos
    Erus, Guray
    Tustison, Nicholas J.
    Postels, Douglas G.
    Taylor, Terrie E.
    Small, Dylan S.
    Shinohara, Russell T.
    BIOMETRICS, 2023, 79 (03) : 2417 - 2429
  • [8] Automated Detection and Quantification of Brain Lesions in Acute Traumatic Brain Injury Using MRI
    Hillary, F. G.
    Biswal, B. B.
    BRAIN IMAGING AND BEHAVIOR, 2009, 3 (02) : 111 - 122
  • [9] Automated brain extraction of multisequence MRI using artificial neural networks
    Isensee, Fabian
    Schell, Marianne
    Pflueger, Irada
    Brugnara, Gianluca
    Bonekamp, David
    Neuberger, Ulf
    Wick, Antje
    Schlemmer, Heinz-Peter
    Heiland, Sabine
    Wick, Wolfgang
    Bendszus, Martin
    Maier-Hein, Klaus H.
    Kickingereder, Philipp
    HUMAN BRAIN MAPPING, 2019, 40 (17) : 4952 - 4964
  • [10] Automated screening of MRI brain scanning using grey level statistics
    Hasan, Ali M.
    Meziane, Farid
    COMPUTERS & ELECTRICAL ENGINEERING, 2016, 53 : 276 - 291