Single and multi-objective real-time optimisation of an industrial injection moulding process via a Bayesian adaptive design of experiment approach

被引:0
|
作者
Kariminejad, Mandana [1 ,2 ,3 ]
Tormey, David [1 ,3 ]
Ryan, Caitriona [3 ,4 ,5 ]
O'Hara, Christopher [1 ,3 ]
Weinert, Albert [1 ,2 ,3 ]
Mcafee, Marion [1 ,2 ,3 ]
机构
[1] Atlantic Technol Univ Sligo, Ctr Precis Engn Mat & Mfg Res, PEM Ctr, Ash Lane, Sligo F91YW50, Ireland
[2] Atlantic Technol Univ, Ctr Math Modelling & Intelligent Syst Hlth & Envir, Ash Lane, Sligo F91YW50, Ireland
[3] Univ Coll Dublin, John Hume Inst, Res Ctr Adv Mfg, I Form, Dublin, Ireland
[4] Trinity Coll Dublin, Sch Med, TCD Biostat Unit, Discipline Publ Hlth & Primary Care, Dublin, Ireland
[5] St James Hosp, Wellcome HRB Clin Res Facil, Dublin D08NHY1, Ireland
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
基金
爱尔兰科学基金会;
关键词
Injection moulding; Gaussian process; Bayesian adaptive design of experiments; Multi-objective optimisation; Nondominated sorting genetic algorithm; WARPAGE; PARAMETERS;
D O I
10.1038/s41598-024-80405-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Minimising cycle time without inducing quality defects is a major challenge in injection moulding (IM). Design of Experiment methods (DoE) have been widely studied for optimisation of injection moulding, however existing methods have limitations, including the need for a large number of experiments within a pre-determined search space. Bayesian adaptive design of experiment (ADoE) is an iterative process where the results of the previous experiments are used to make an informed selection for the next design. In this study, an experimental ADoE approach based on Bayesian optimisation was developed for injection moulding using process and sensor data to optimise the quality and cycle time in real-time. A novel approach for the real-time characterisation of post-production shrinkage was introduced, utilising in-mould sensor data on temperature differential during part cooling. This characterisation approach was verified by post-production metrology results. A single and multi-objective optimisation of the cycle time and temperature differential (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta T$$\end{document}) in an injection moulded component is proposed. The multi-objective optimisation techniques, composite desirability function and Nondominated Sorting Genetic Algorithm (NSGA-II) using the Response Surface Methodology (RSM) model, are compared with the real-time novel ADoE approach. ADoE achieved almost a 50\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} reduction in the number of experiments required for the single optimisation of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta T$$\end{document}, and an almost 30\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} decrease for the optimisation of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta T$$\end{document} and cycle time together compared to composite desirability function and NSGA-II. The optimal settings identified by ADoE for multiobjective optimisation were similar to the selected Pareto optimal solution found by NSGA-II.
引用
收藏
页数:19
相关论文
共 11 条
  • [1] Real-time multi-objective optimisation for electric vehicle charging management
    Das, Ridoy
    Wang, Yue
    Busawon, Krishna
    Putrus, Ghanim
    Neaimeh, Myriam
    JOURNAL OF CLEANER PRODUCTION, 2021, 292
  • [2] A multi-objective optimisation approach to the design of experiment in de novo assembly projects
    Nadalin, Francesca
    Vezzi, Francesco
    Policriti, Alberto
    2012 23RD INTERNATIONAL WORKSHOP ON DATABASE AND EXPERT SYSTEMS APPLICATIONS (DEXA), 2012, : 213 - 217
  • [3] Multi-Objective Optimisation of Injection Moulding Process for Dashboard Using Genetic Algorithm and Type-2 Fuzzy Neural Network
    Qazani, Mohammad Reza Chalak
    Moayyedian, Mehdi
    Amirkhizi, Parisa Jourabchi
    Hedayati-Dezfooli, Mohsen
    Abdalmonem, Ahmed
    Alsmadi, Ahmad
    Alam, Furqan
    PROCESSES, 2024, 12 (06)
  • [4] Multi-objective optimisation of plastic injection moulding process using mould flow analysis and response surface methodology
    Meiabadi, Mohammad Saleh
    Moradi, Mamoud
    Kazerooni, Afshin
    Demers, Vincent
    INTERNATIONAL JOURNAL OF MATERIALS & PRODUCT TECHNOLOGY, 2022, 64 (02) : 140 - 155
  • [5] Multi-objective optimisation approach to optimal experiment design in dynamic bioprocesses using ACADO toolkit
    Logist, Filip
    Telen, Dries
    Van Derlinden, Eva
    Van Impe, Jan F.
    21ST EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2011, 29 : 462 - 466
  • [6] Simultaneous Multi-Objective Optimisation for Low-Power Real-Time Networks-On-Chip
    Sayuti, M. Norazizi Sham Mohd
    2018 4TH INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS AND SYSTEM ENGINEERING (ICEESE), 2018, : 23 - 28
  • [7] Optimization of injection molding process using multi-objective bayesian optimization and constrained generative inverse design networks
    Jung, Jiyoung
    Park, Kundo
    Cho, Byungjin
    Park, Jinkyoo
    Ryu, Seunghwa
    JOURNAL OF INTELLIGENT MANUFACTURING, 2023, 34 (08) : 3623 - 3636
  • [8] Tracking control of uncertain nonlinear systems via adaptive Gaussian process prediction and real-time optimisation
    Ma, Tong
    Che, Jiaxing
    INTERNATIONAL JOURNAL OF CONTROL, 2024, 97 (11) : 2655 - 2668
  • [9] Multi-objective optimisation of user experience in mobile application design via a grey-fuzzy-based Taguchi approach
    Li, Yongfeng
    Zhu, Liping
    CONCURRENT ENGINEERING-RESEARCH AND APPLICATIONS, 2020, 28 (03): : 175 - 188
  • [10] Real-time traffic signal control for intersections based on dynamic O-D estimation and multi-objective optimisation: combined model and algorithm
    Jiao, Pengpeng
    Sun, Tuo
    Li, Dongyue
    Guo, Han
    Li, Ruimin
    Hou, Zenghao
    IET INTELLIGENT TRANSPORT SYSTEMS, 2018, 12 (07) : 619 - 630