On quasi-integrable deformation scheme of the KdV system

被引:0
作者
Abhinav, Kumar [1 ]
Guha, Partha [2 ]
机构
[1] Mahidol Univ, Ctr Theoret Phys & Nat Philosophy, Nakhonsawan Studiorum Adv Studies, Nakhonsawan 60130, Thailand
[2] Khalifa Univ Sci & Technol, Dept Math, POB 127788, Abu Dhabi, U Arab Emirates
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
KdV equation; NLS equation; Integrability; Quasi-integrable deformation; SOLITONS; EQUATIONS;
D O I
10.1038/s41598-025-86381-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a general approach to quasi-deform the Korteweg-De Vries (KdV) equation by deforming its Hamiltonian. The standard abelianization process based on the inherent sl(2) loop algebra leads to an infinite number of anomalous conservation laws, that yield conserved charges for definite space-time parity of the solution. Judicious choice of the deformed Hamiltonian yields an integrable system with scaled parameters as well as a hierarchy of deformed systems, some of which possibly are quasi-integrable. One such system maps to the known quasi-deformed nonlinear Schr & ouml;dinger (NLS) soliton in the already known weak-coupling limit, whereas a generic scaling of the KdV amplitude \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\rightarrow u<^>{1+\varepsilon }$$\end{document} also suggests quasi-integrability under an order-by-order expansion. In general, these deformed KdV solutions need to be parity-even for quasi-conservation that agrees with our analytical results. Following the recent demonstration of quasi-integrability in regularized long wave (RLW) and modified regularized long wave (mRLW) systems by ter Braak et al. (Nucl Phys B 939:49-94, 2019), that are particular cases of the present approach, general soliton solutions should numerically be accessible.
引用
收藏
页数:18
相关论文
共 33 条
  • [1] Quasi-integrability in supersymmetric sine-Gordon models
    Abhinav, K.
    Guha, P.
    [J]. EPL, 2016, 116 (01)
  • [2] Non-holonomic and quasi-integrable deformations of the AB equations
    Abhinav, Kumar
    Mukherjee, Indranil
    Guha, Partha
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2022, 433
  • [3] Analysis and comparative study of non-holonomic and quasi-integrable deformations of the nonlinear Schrodinger equation
    Abhinav, Kumar
    Guha, Partha
    Mukherjee, Indranil
    [J]. NONLINEAR DYNAMICS, 2020, 99 (02) : 1179 - 1194
  • [4] COMPLETELY INTEGRABLE SYSTEMS, EUCLIDEAN LIE-ALGEBRAS, AND CURVES
    ADLER, M
    VANMOERBEKE, P
    [J]. ADVANCES IN MATHEMATICS, 1980, 38 (03) : 267 - 317
  • [5] Arnol'd VI., 1989, MATH METHODS CLASSIC, DOI DOI 10.1007/978-1-4757-2063-1
  • [6] PT symmetry in quasi-integrable models
    Assis, P. E. G.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (24)
  • [7] Modified AKNS model, Riccati-type pseudo-potential approach and infinite towers of quasi-conservation laws
    Blas, H.
    Cerna Maguina, M.
    dos Santos, L. F.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2022, 36 (15):
  • [8] Quasi-integrable KdV models, towers of infinite number of anomalous charges and soliton collisions
    Blas, H.
    Ochoa, R.
    Suarez, D.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (03)
  • [9] Riccati-type pseudo-potentials, conservation laws and solitons of deformed sine-Gordon models
    Blas, H.
    Callisaya, H. F.
    Campos, J. P. R.
    [J]. NUCLEAR PHYSICS B, 2020, 950
  • [10] Asymptotically Conserved Charges and 2-Kink Collision in Quasi-integrable Potential KdV Models
    Blas, Harold
    [J]. BRAZILIAN JOURNAL OF PHYSICS, 2024, 54 (05)