Positive solutions for a Kirchhoff type problem with critical growth via nonlinear Rayleigh quotient

被引:0
作者
Figueiredo, Giovany M. [1 ]
Lima, Eduardo D. [2 ]
Silva, Edcarlos D. [2 ]
Oliveira Junior, Jose C. [3 ]
机构
[1] Univ Brasilia UnB, Brasilia, DF, Brazil
[2] Univ Fed Goias UFG, Goiania, Go, Brazil
[3] Univ Fed Norte Tocantins UFNT, Araguaina, TO, Brazil
关键词
ELLIPTIC-EQUATIONS; EXISTENCE; MULTIPLICITY;
D O I
10.1007/s00526-024-02861-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present work we establish the existence and multiplicity of positive solutions for a critical elliptic problem in the whole space RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}<^>N$$\end{document}. The main feature here is to treat a Kirchhoff-type elliptic problem where the nonlinearity is critical and defines a sign-changing function. Our approach relies on the minimization method applied to the Nehari manifold together with the nonlinear Rayleigh quotient method. Here, we use the fibering maps associated with the energy functional which exhibits degenerate points under suitable values on the two parameters within the nonlinearity. This difficulty does not allow us to apply the Lagrange Multipliers Theorem in general. Furthermore, our nonlinearity does not satisfy the famous Ambrosetti-Rabinowitz condition. Our main contribution relies on restoring the strong convergence and compactness results from the Sobolev spaces into the Lebesgue spaces. Here, we establish also some nonexistence results under specific assumptions on the nonlinearity by using a Pohozaev identity.
引用
收藏
页数:49
相关论文
共 46 条
[1]   Positive solutions for a quasilinear elliptic equation of Kirchhoff type [J].
Alves, CO ;
Corrêa, FJSA ;
Ma, TF .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (01) :85-93
[2]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]   EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N) [J].
BARTSCH, T ;
WANG, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) :1725-1741
[4]  
Brzis H, 2011, Functional analysis, Sobolev spaces and partial differential equations, DOI [10.1007/978-0-387-70914-7, DOI 10.1007/978-0-387-70914-7]
[5]   ON THE NON-LINEAR VIBRATION PROBLEM OF THE ELASTIC STRING [J].
CARRIER, GF .
QUARTERLY OF APPLIED MATHEMATICS, 1945, 3 (02) :157-165
[6]   A NOTE ON THE VIBRATING STRING [J].
CARRIER, GF .
QUARTERLY OF APPLIED MATHEMATICS, 1949, 7 (01) :97-101
[7]   CHOQUARD EQUATIONS VIA NONLINEAR RAYLEIGH QUOTIENT FOR CONCAVE-CONVEX NONLINEARITIES [J].
Carvalho, M. L. M. ;
Silva, Edcarlos D. ;
Goulart, C. .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (10) :3429-3463
[8]   SEPARATING SOLUTIONS OF NONLINEAR PROBLEMS USING NONLINEAR GENERALIZED RAYLEIGH QUOTIENTS [J].
Carvalho, Marcos Leandro ;
Il'yasov, Yavdat ;
Santos, Carlos Alberto .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2021, 58 (02) :453-480
[9]   The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions [J].
Chen, Ching-yu ;
Kuo, Yueh-cheng ;
Wu, Tsung-fang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (04) :1876-1908
[10]   Multiple solutions for the nonhomogeneous Kirchhoff equation on RN [J].
Chen, Shang-Jie ;
Li, Lin .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (03) :1477-1486