共 6 条
Koszul graded Möbius algebras and strongly chordal graphs
被引:0
|作者:
Laclair, Adam
[1
]
Mastroeni, Matthew
[2
]
Mccullough, Jason
[3
]
Peeva, Irena
[4
]
机构:
[1] Purdue Univ, Dept Math, W Lafayette, IN USA
[2] SUNY Polytech Inst, Utica, NY USA
[3] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[4] Cornell Univ, Dept Math, Ithaca, NY USA
来源:
SELECTA MATHEMATICA-NEW SERIES
|
2025年
/
31卷
/
02期
基金:
美国国家科学基金会;
关键词:
Koszul algebra;
Graded M & ouml;
bius algebra;
Chow ring;
Matroid;
Lattice;
Chordal and strongly chordal graphs;
PROPERTY;
SERIES;
RINGS;
D O I:
10.1007/s00029-025-01029-6
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
The graded M & ouml;bius algebra of a matroid is a commutative graded algebra which encodes the combinatorics of the lattice of flats of the matroid. As a special subalgebra of the augmented Chow ring of the matroid, it plays an important role in the recent proof of the Dowling-Wilson Top Heavy Conjecture. Recently, Mastroeni and McCullough proved that the Chow ring and the augmented Chow ring of a matroid are Koszul. We study when graded M & ouml;bius algebras are Koszul. We characterize the Koszul graded M & ouml;bius algebras of cycle matroids of graphs in terms of properties of the graphs. Our results yield a new characterization of strongly chordal graphs via edge orderings.
引用
收藏
页数:30
相关论文