Koszul graded Möbius algebras and strongly chordal graphs

被引:0
|
作者
Laclair, Adam [1 ]
Mastroeni, Matthew [2 ]
Mccullough, Jason [3 ]
Peeva, Irena [4 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN USA
[2] SUNY Polytech Inst, Utica, NY USA
[3] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[4] Cornell Univ, Dept Math, Ithaca, NY USA
来源
SELECTA MATHEMATICA-NEW SERIES | 2025年 / 31卷 / 02期
基金
美国国家科学基金会;
关键词
Koszul algebra; Graded M & ouml; bius algebra; Chow ring; Matroid; Lattice; Chordal and strongly chordal graphs; PROPERTY; SERIES; RINGS;
D O I
10.1007/s00029-025-01029-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The graded M & ouml;bius algebra of a matroid is a commutative graded algebra which encodes the combinatorics of the lattice of flats of the matroid. As a special subalgebra of the augmented Chow ring of the matroid, it plays an important role in the recent proof of the Dowling-Wilson Top Heavy Conjecture. Recently, Mastroeni and McCullough proved that the Chow ring and the augmented Chow ring of a matroid are Koszul. We study when graded M & ouml;bius algebras are Koszul. We characterize the Koszul graded M & ouml;bius algebras of cycle matroids of graphs in terms of properties of the graphs. Our results yield a new characterization of strongly chordal graphs via edge orderings.
引用
收藏
页数:30
相关论文
共 6 条
  • [1] Koszul differential graded algebras and modules
    He, J. -W.
    Wu, Q. -S.
    RING THEORY 2007, PROCEEDINGS, 2009, : 69 - +
  • [2] Full graphs and Koszul algebras II
    Green, Edward L.
    Hartman, Gregory
    COMMUNICATIONS IN ALGEBRA, 2006, 34 (11) : 4033 - 4054
  • [3] Koszul differential graded algebras and BGG correspondence
    He, J. -W.
    Wu, Q. - S.
    JOURNAL OF ALGEBRA, 2008, 320 (07) : 2934 - 2962
  • [4] Strongly graded groupoids and strongly graded Steinberg algebras
    Clark, Lisa Orloff
    Hazrat, Roozbeh
    Rigby, Simon W.
    JOURNAL OF ALGEBRA, 2019, 530 : 34 - 68
  • [5] m-Koszul Artin-Schelter regular algebras
    Mori, Izuru
    Smith, S. Paul
    JOURNAL OF ALGEBRA, 2016, 446 : 373 - 399
  • [6] GRADED CHAIN CONDITIONS AND LEAVITT PATH ALGEBRAS OF NO-EXIT GRAPHS
    Vas, Lia
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2018, 105 (02) : 229 - 256