A hybrid machine learning approach for the personalized prognostication of aggressive skin cancers

被引:0
|
作者
Andrew, Tom W. [1 ,2 ]
Alrawi, Mogdad [2 ]
Plummer, Ruth [1 ,3 ,4 ]
Reynolds, Nick [1 ,5 ,6 ]
Sondak, Vern [7 ,8 ]
Brownell, Isaac [9 ]
Lovat, Penny E. [1 ]
Rose, Aidan [1 ,2 ]
Shalhout, Sophia Z. [10 ,11 ]
机构
[1] Newcastle Univ, Translat & Clin Res Inst, Newcastle Upon Tyne, England
[2] Newcastle Upon Tyne Hosp NHS Fdn Trust NuTH, Royal Victoria Infirm, Dept Plast & Reconstruct Surg, Newcastle Upon Tyne, England
[3] Newcastle Univ, Dept Oncol, Newcastle Upon Tyne, England
[4] Northern Ctr Canc Care, Newcastle Upon Tyne, England
[5] Newcastle Upon Tyne Hosp NHS Fdn Trust NuTH, Royal Victoria Infirm, NIHR Newcastle Biomed Res Ctr, Newcastle Upon Tyne, England
[6] Newcastle Upon Tyne Hosp NHS Fdn Trust NuTH, Royal Victoria Infirm, Dept Dermatol, Newcastle Upon Tyne, England
[7] Univ S Florida, Moffitt Canc Ctr, Dept Cutaneous Oncol, Tampa, FL USA
[8] Univ S Florida, Morsani Coll Med, Dept Oncol Sci, Tampa, FL USA
[9] NIAMS, Dermatol Branch, NIH, Bethesda, MD USA
[10] Mass Eye & Ear, Mike Toth Head & Neck Canc Res Ctr, Dept Otolaryngol Head & Neck Surg, Div Surg Oncol, Boston, MA USA
[11] Harvard Med Sch, Dept Otolaryngol Head & Neck Surg, Boston, MA USA
来源
NPJ DIGITAL MEDICINE | 2025年 / 8卷 / 01期
关键词
MERKEL CELL-CARCINOMA; SURVIVAL; RISK; MEN;
D O I
10.1038/s41746-024-01329-9
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Accurate prognostication guides optimal clinical management in skin cancer. Merkel cell carcinoma (MCC) is the most aggressive form of skin cancer that often presents in advanced stages and is associated with poor survival rates. There are no personalized prognostic tools in use in MCC. We employed explainability analysis to reveal new insights into mortality risk factors for this highly aggressive cancer. We then combined deep learning feature selection with a modified XGBoost framework, to develop a web-based prognostic tool for MCC termed 'DeepMerkel'. DeepMerkel can make accurate personalised, time-dependent survival predictions for MCC from readily available clinical information. It demonstrated generalizability through high predictive performance in an international clinical cohort, out-performing current population-based prognostic staging systems. MCC and DeepMerkel provide the exemplar model of personalised machine learning prognostic tools in aggressive skin cancers.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Personalized Sleep Parameters Estimation from Actigraphy: A Machine Learning Approach
    Khademi, Aria
    EL-Manzalawy, Yasser
    Master, Lindsay
    Buxton, Orfeu M.
    Honavar, Vasant G.
    NATURE AND SCIENCE OF SLEEP, 2019, 11 : 387 - 399
  • [32] Integrating Machine Learning for Personalized Fracture Risk Assessment: A Multimodal Approach
    Saleem, Sheikh Mohd
    Jan, Shah Sumaya
    KOREAN JOURNAL OF FAMILY MEDICINE, 2024, 45 (06): : 356 - 358
  • [33] A machine learning approach for personalized autonomous lane change initiation and control
    Vallon, Charlott
    Ercan, Ziya
    Carvalho, Ashwin
    Borrelli, Francesco
    2017 28TH IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV 2017), 2017, : 1590 - 1595
  • [34] Machine Learning and Personalized Modeling for Diagnosis of Acute GvHD: an Integrated Approach
    Fiasche, Maurizio
    Cuzzola, Maria
    Fedele, Roberta
    Iacopino, Pasquale
    Morabito, Francesco C.
    NEURAL NETS WIRN10, 2011, 226 : 252 - 259
  • [35] Personalized treatment for coronary artery disease patients: a machine learning approach
    Bertsimas, Dimitris
    Orfanoudaki, Agni
    Weiner, Rory B.
    HEALTH CARE MANAGEMENT SCIENCE, 2020, 23 (04) : 482 - 506
  • [36] A Personalized Machine Learning Approach for Targeting Behavioral Health in Adolescent Depression
    Nan, Jason
    Jaiswal, Satish
    Purpura, Suzanna
    Manchanda, James
    Afshar, Houtan
    Maric, Vojislav
    Ramanathan, Dhakshin
    Mishra, Jyoti
    BIOLOGICAL PSYCHIATRY, 2024, 95 (10) : S59 - S59
  • [37] Personalized prediction of early childhood asthma persistence: A machine learning approach
    Bose, Saurav
    Kenyon, Chen C.
    Masino, Aaron J.
    PLOS ONE, 2021, 16 (03):
  • [38] Personalized treatment for coronary artery disease patients: a machine learning approach
    Dimitris Bertsimas
    Agni Orfanoudaki
    Rory B. Weiner
    Health Care Management Science, 2020, 23 : 482 - 506
  • [39] Personalized machine learning approach to injury monitoring in elite volleyball players
    de Leeuw, Arie-Willem
    van der Zwaard, Stephan
    van Baar, Rick
    Knobbe, Arno
    EUROPEAN JOURNAL OF SPORT SCIENCE, 2022, 22 (04) : 511 - 520
  • [40] Personalized Expression Synthesis Using a Hybrid Geometric-Machine Learning Method
    Zaied, Sarra
    Soladie, Catherine
    Richard, Pierre-Yves
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2019, PT II, 2019, 11752 : 24 - 34