A hybrid machine learning approach for the personalized prognostication of aggressive skin cancers

被引:0
|
作者
Andrew, Tom W. [1 ,2 ]
Alrawi, Mogdad [2 ]
Plummer, Ruth [1 ,3 ,4 ]
Reynolds, Nick [1 ,5 ,6 ]
Sondak, Vern [7 ,8 ]
Brownell, Isaac [9 ]
Lovat, Penny E. [1 ]
Rose, Aidan [1 ,2 ]
Shalhout, Sophia Z. [10 ,11 ]
机构
[1] Newcastle Univ, Translat & Clin Res Inst, Newcastle Upon Tyne, England
[2] Newcastle Upon Tyne Hosp NHS Fdn Trust NuTH, Royal Victoria Infirm, Dept Plast & Reconstruct Surg, Newcastle Upon Tyne, England
[3] Newcastle Univ, Dept Oncol, Newcastle Upon Tyne, England
[4] Northern Ctr Canc Care, Newcastle Upon Tyne, England
[5] Newcastle Upon Tyne Hosp NHS Fdn Trust NuTH, Royal Victoria Infirm, NIHR Newcastle Biomed Res Ctr, Newcastle Upon Tyne, England
[6] Newcastle Upon Tyne Hosp NHS Fdn Trust NuTH, Royal Victoria Infirm, Dept Dermatol, Newcastle Upon Tyne, England
[7] Univ S Florida, Moffitt Canc Ctr, Dept Cutaneous Oncol, Tampa, FL USA
[8] Univ S Florida, Morsani Coll Med, Dept Oncol Sci, Tampa, FL USA
[9] NIAMS, Dermatol Branch, NIH, Bethesda, MD USA
[10] Mass Eye & Ear, Mike Toth Head & Neck Canc Res Ctr, Dept Otolaryngol Head & Neck Surg, Div Surg Oncol, Boston, MA USA
[11] Harvard Med Sch, Dept Otolaryngol Head & Neck Surg, Boston, MA USA
来源
NPJ DIGITAL MEDICINE | 2025年 / 8卷 / 01期
关键词
MERKEL CELL-CARCINOMA; SURVIVAL; RISK; MEN;
D O I
10.1038/s41746-024-01329-9
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Accurate prognostication guides optimal clinical management in skin cancer. Merkel cell carcinoma (MCC) is the most aggressive form of skin cancer that often presents in advanced stages and is associated with poor survival rates. There are no personalized prognostic tools in use in MCC. We employed explainability analysis to reveal new insights into mortality risk factors for this highly aggressive cancer. We then combined deep learning feature selection with a modified XGBoost framework, to develop a web-based prognostic tool for MCC termed 'DeepMerkel'. DeepMerkel can make accurate personalised, time-dependent survival predictions for MCC from readily available clinical information. It demonstrated generalizability through high predictive performance in an international clinical cohort, out-performing current population-based prognostic staging systems. MCC and DeepMerkel provide the exemplar model of personalised machine learning prognostic tools in aggressive skin cancers.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Integrating musculoskeletal simulation and machine learning: a hybrid approach for personalized ankle-foot exoskeleton assistance strategies
    Zhang, Xianyu
    Li, Shihao
    Ying, Zhenzhi
    Shu, Liming
    Sugita, Naohiko
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2024, 12
  • [22] A Hybrid Machine Learning approach for Drug Repositioning
    Menon, Supriya M.
    Rajarajeswari, Pothuraju
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2020, 20 (12): : 217 - 223
  • [23] Harnessing hybrid deep learning approach for personalized retrieval in e-learning
    Tahir, Sidra
    Hafeez, Yaser
    Humayun, Mamoona
    Ahmad, Faizan
    Khan, Maqbool
    Shaheen, Momina
    PLOS ONE, 2024, 19 (11):
  • [24] Machine Learning for Endometrial Cancer Prediction and Prognostication
    Bhardwaj, Vipul
    Sharma, Arundhiti
    Parambath, Snijesh Valiya
    Gul, Ijaz
    Zhang, Xi
    Lobie, Peter E.
    Qin, Peiwu
    Pandey, Vijay
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [25] Prognostication of Diabetic Retinopathy Using Machine Learning
    Hema, M.
    Shankar, K. C. Prabu
    Baskar, M.
    INTERNATIONAL JOURNAL OF EARLY CHILDHOOD SPECIAL EDUCATION, 2022, 14 (04) : 854 - 870
  • [26] Stratified Prognostication and Interventional Strategies in Chronic Hepatic Diseases: An Ensemble Machine Learning Approach
    Hossain, Al-Amin
    Ahamed, Imtiaj Uddin
    Das Gupta, Uchchas
    Anika, Ayvee Nusreen
    Ahamed, Imam Uddin
    2024 IEEE INTERNATIONAL CONFERENCE ON ADVANCED SYSTEMS AND EMERGENT TECHNOLOGIES, ICASET 2024, 2024,
  • [27] Human Skin Profiling by Physical Skin Biomarkers: A Machine Learning Approach
    Ardali, Davoud Rahimi
    Rueether, Lars
    Popov, Viktor
    Schlippe, Gerrit
    Vuksanovic, Branislav
    THIRD INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, 2019, 797 : 151 - 160
  • [28] A machine learning approach to predict in vivo skin growth
    Nagle, Matt
    Broderick, Hannah Conroy
    Tepole, Adrian Buganza
    Fop, Michael
    Annaidh, Aisling Ni
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [29] Personalized Automated Machine Learning
    Kulbach, Cedric
    Philipp, Patrick
    Thoma, Steffen
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 1246 - 1253
  • [30] A Novel Probabilistic Approach for Personalized Radiotherapy: Integrating Machine Learning and Optimization
    Ajdari, A.
    Bortfeld, T.
    MEDICAL PHYSICS, 2022, 49 (06) : E594 - E594