A hybrid machine learning approach for the personalized prognostication of aggressive skin cancers

被引:0
|
作者
Andrew, Tom W. [1 ,2 ]
Alrawi, Mogdad [2 ]
Plummer, Ruth [1 ,3 ,4 ]
Reynolds, Nick [1 ,5 ,6 ]
Sondak, Vern [7 ,8 ]
Brownell, Isaac [9 ]
Lovat, Penny E. [1 ]
Rose, Aidan [1 ,2 ]
Shalhout, Sophia Z. [10 ,11 ]
机构
[1] Newcastle Univ, Translat & Clin Res Inst, Newcastle Upon Tyne, England
[2] Newcastle Upon Tyne Hosp NHS Fdn Trust NuTH, Royal Victoria Infirm, Dept Plast & Reconstruct Surg, Newcastle Upon Tyne, England
[3] Newcastle Univ, Dept Oncol, Newcastle Upon Tyne, England
[4] Northern Ctr Canc Care, Newcastle Upon Tyne, England
[5] Newcastle Upon Tyne Hosp NHS Fdn Trust NuTH, Royal Victoria Infirm, NIHR Newcastle Biomed Res Ctr, Newcastle Upon Tyne, England
[6] Newcastle Upon Tyne Hosp NHS Fdn Trust NuTH, Royal Victoria Infirm, Dept Dermatol, Newcastle Upon Tyne, England
[7] Univ S Florida, Moffitt Canc Ctr, Dept Cutaneous Oncol, Tampa, FL USA
[8] Univ S Florida, Morsani Coll Med, Dept Oncol Sci, Tampa, FL USA
[9] NIAMS, Dermatol Branch, NIH, Bethesda, MD USA
[10] Mass Eye & Ear, Mike Toth Head & Neck Canc Res Ctr, Dept Otolaryngol Head & Neck Surg, Div Surg Oncol, Boston, MA USA
[11] Harvard Med Sch, Dept Otolaryngol Head & Neck Surg, Boston, MA USA
来源
NPJ DIGITAL MEDICINE | 2025年 / 8卷 / 01期
关键词
MERKEL CELL-CARCINOMA; SURVIVAL; RISK; MEN;
D O I
10.1038/s41746-024-01329-9
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Accurate prognostication guides optimal clinical management in skin cancer. Merkel cell carcinoma (MCC) is the most aggressive form of skin cancer that often presents in advanced stages and is associated with poor survival rates. There are no personalized prognostic tools in use in MCC. We employed explainability analysis to reveal new insights into mortality risk factors for this highly aggressive cancer. We then combined deep learning feature selection with a modified XGBoost framework, to develop a web-based prognostic tool for MCC termed 'DeepMerkel'. DeepMerkel can make accurate personalised, time-dependent survival predictions for MCC from readily available clinical information. It demonstrated generalizability through high predictive performance in an international clinical cohort, out-performing current population-based prognostic staging systems. MCC and DeepMerkel provide the exemplar model of personalised machine learning prognostic tools in aggressive skin cancers.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Personalized learning in education: a machine learning and simulation approach
    Taylor, Ross
    Fakhimi, Masoud
    Ioannou, Athina
    Spanaki, Konstantina
    BENCHMARKING-AN INTERNATIONAL JOURNAL, 2024,
  • [2] Personalized Risk Schemes and Machine Learning to Empower Genomic Prognostication Models in Myelodysplastic Syndromes
    Awada, Hussein
    Gurnari, Carmelo
    Durmaz, Arda
    Awada, Hassan
    Pagliuca, Simona
    Visconte, Valeria
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (05)
  • [3] INTERPRETABLE MACHINE LEARNING MODELS FOR PERSONALIZED PROGNOSTICATION IN INTERMEDIATE-RISK RADICAL PROSTATECTOMY PATIENTS
    Ghaffar, Umar
    Karnes, Robert J.
    JOURNAL OF UROLOGY, 2024, 211 (05): : E792 - E792
  • [4] Personalized quantification of facial normality: a machine learning approach
    Osman Boyaci
    Erchin Serpedin
    Mitchell A. Stotland
    Scientific Reports, 10
  • [5] Personalized Physical Activity Coaching: A Machine Learning Approach
    Dijkhuis, Talko B.
    Blaauw, Frank J.
    van Ittersum, MiriamW.
    Velthuijsen, Hugo
    Aiello, Marco
    SENSORS, 2018, 18 (02)
  • [6] Stepping Up the Personalized Approach in COPD with Machine Learning
    Mekov, Evgeni
    Miravitlles, Marc
    Topalovic, Marko
    Singanayagam, Aran
    Petkov, Rosen
    CURRENT RESPIRATORY MEDICINE REVIEWS, 2023, 19 (03) : 165 - 169
  • [7] Personalized quantification of facial normality: a machine learning approach
    Boyaci, Osman
    Serpedin, Erchin
    Stotland, Mitchell A.
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [8] Melanoma skin cancer detection using deep learning and classical machine learning techniques: A hybrid approach
    Daghrir, Jinen
    Tlig, Lotfi
    Bouchouicha, Moez
    Sayadi, Mounir
    2020 5TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP'2020), 2020,
  • [9] Based on machine learning for personalized skin care products recommendation engine
    Li, Hsiao-hui
    Liao, Yuan-Hsun
    Huang, Yen-nun
    Cheng, Po-Jen
    2020 INTERNATIONAL SYMPOSIUM ON COMPUTER, CONSUMER AND CONTROL (IS3C 2020), 2021, : 460 - 462
  • [10] Personalized machine learning approach to predict candidemia in medical wards
    Ripoli, Andrea
    Sozio, Emanuela
    Sbrana, Francesco
    Bertolino, Giacomo
    Pallotto, Carlo
    Cardinali, Gianluigi
    Meini, Simone
    Pieralli, Filippo
    Azzini, Anna Maria
    Concia, Ercole
    Viaggi, Bruno
    Tascini, Carlo
    INFECTION, 2020, 48 (05) : 749 - 759