Optimal control of a COVID-19 dynamics based on SEIQR model

被引:0
作者
Li, Zhong-Ning [1 ,2 ]
Tang, Yong-Lu [1 ]
Wang, Zong [3 ]
机构
[1] Yinchuan Energy Inst, Dept Basic, Yinchuan 750021, Ningxia, Peoples R China
[2] Shinawatra Univ, Fac Educ, Bangkok 10100, Thailand
[3] Qingdao Univ Technol, Sch Sci, Qingdao 266520, Peoples R China
来源
ADVANCES IN CONTINUOUS AND DISCRETE MODELS | 2025年 / 2025卷 / 01期
基金
中国国家自然科学基金;
关键词
COVID-19; Optimal control; Asymptomatic and symptomatic infected; Pontryagin's maximum principle;
D O I
10.1186/s13662-025-03869-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper establishes an SEIQR epidemic model that includes both symptomatic and asymptomatic individuals. To control COVID-19, various interventions are employed, such as social distancing, widespread use of face masks, nucleic acid testing, and sufficient medical resources. Three control functions are used to manage the evolution of the proposed model. The Hamiltonian and Lagrangian are formulated to explore the existence of optimal control. Pontryagin's maximum principle is applied to describe the control variables in the optimal control model. Additionally, numerical simulations are presented to illustrate the theoretical results.
引用
收藏
页数:16
相关论文
共 29 条
[11]   Optimal control of a delayed SIRC epidemic model with saturated incidence rate [J].
Li, Lele ;
Sun, Caixia ;
Jia, Jianwen .
OPTIMAL CONTROL APPLICATIONS & METHODS, 2019, 40 (02) :367-374
[12]   Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia [J].
Li, Qun ;
Guan, Xuhua ;
Wu, Peng ;
Wang, Xiaoye ;
Zhou, Lei ;
Tong, Yeqing ;
Ren, Ruiqi ;
Leung, Kathy S. M. ;
Lau, Eric H. Y. ;
Wong, Jessica Y. ;
Xing, Xuesen ;
Xiang, Nijuan ;
Wu, Yang ;
Li, Chao ;
Chen, Qi ;
Li, Dan ;
Liu, Tian ;
Zhao, Jing ;
Liu, Man ;
Tu, Wenxiao ;
Chen, Chuding ;
Jin, Lianmei ;
Yang, Rui ;
Wang, Qi ;
Zhou, Suhua ;
Wang, Rui ;
Liu, Hui ;
Luo, Yinbo ;
Liu, Yuan ;
Shao, Ge ;
Li, Huan ;
Tao, Zhongfa ;
Yang, Yang ;
Deng, Zhiqiang ;
Liu, Boxi ;
Ma, Zhitao ;
Zhang, Yanping ;
Shi, Guoqing ;
Lam, Tommy T. Y. ;
Wu, Joseph T. ;
Gao, George F. ;
Cowling, Benjamin J. ;
Yang, Bo ;
Leung, Gabriel M. ;
Feng, Zijian .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 382 (13) :1199-1207
[13]   Inertial projection neural network for nonconvex sparse signal recovery with prior information [J].
Luo, Xiaohu ;
Zhang, Zili .
FRONTIERS OF COMPUTER SCIENCE, 2023, 17 (06)
[14]   Global inverse optimality for a class of recurrent neural networks with multiple proportional delays [J].
Ma, Weijun ;
Guo, Xuhui ;
Wang, Huaizhu ;
Zheng, Yuanshi .
INFORMATION SCIENCES, 2024, 662
[15]   Practical exponential stability of stochastic age-dependent capital system with Levy noise [J].
Ma, Weijun ;
Luo, Xiaohu ;
Zhu, Quanxin .
SYSTEMS & CONTROL LETTERS, 2020, 144
[16]  
Macalisang J.M., 2020, Comput. Math. Biophys, V8, P168, DOI [10.1515/cmb-2020-0109, DOI 10.1515/CMB-2020-0109]
[17]   ON CESARI PROPERTY(Q) [J].
PAPAGEORGIOU, NS .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1987, 53 (02) :259-268
[18]   Optimal feedback control for semilinear fractional evolution equations in Banach spaces [J].
Wang, JinRong ;
Zhou, Yong ;
Wei, Wei .
SYSTEMS & CONTROL LETTERS, 2012, 61 (04) :472-476
[19]   Near-optimal control of a stochastic partial differential equation SEIR epidemic model under economic constraints [J].
Wang, Zong ;
Zhang, Qimin .
EUROPEAN JOURNAL OF CONTROL, 2023, 69
[20]   Optimal vaccination strategy for a mean-field stochastic susceptible-infected-vaccinated system [J].
Wang, Zong ;
Zhang, Qimin .
INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2023, 16 (01)