Classification of Quasi-Einstein Structure on Three-Dimensional Homogeneous Almost α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-Cosympletic Manifolds

被引:0
作者
Mohan Khatri [1 ]
机构
[1] Pachhunga University College,Department of Mathematics
关键词
Homogeneous manifolds; Quasi-Einstein; lie groups; cosympletic; hyperbolic space; Primary 53C25; Secondary 53C30; 53D15;
D O I
10.1007/s00009-024-02756-4
中图分类号
学科分类号
摘要
The purpose of the paper is to categorize quasi-Einstein structures on simply connected three-dimensional homogeneous almost α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-cosympletic manifolds, where the Reeb vector field is an eigenvector of the Ricci operator. This is achieved by assuming that the potential vector field of the quasi-Einstein structure is both pointwise collinear and transversal to the Reeb vector field at every point. The paper concludes by constructing an instance of a hyperbolic space, denoted as H3(-α2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}^3(-\alpha ^2)$$\end{document}, which satisfies the quasi-Einstein structure.
引用
收藏
相关论文
共 48 条
  • [1] Barros AA(2017)Triviality of Compact m-Quasi-Einstein Manifolds Results Math. 71 241-250
  • [2] Gomes JNV(2012)Integral formulae on quasi-Einstein manifolds and applications Glasgow Math. J. 54 213-223
  • [3] Barros A(2014)Uniqueness of quasi-Einstein metrics on 3-dimensional homogeneous manifolds Diff. Geom. Appl. 35 60-73
  • [4] Ribeiro E(1967)The theory of quasi-Sasakian structures J. Differ. Geom. 1 331-345
  • [5] Barros A(2014)Locally conformally flat Lorentzian quasi-Einstein manifolds Monatshefte Math. 173 175-186
  • [6] Ribeiro E(2016)Cosympletic and Complex Manifolds 3 252-270
  • [7] Silva Filho J(2010)-cosympletic Lie algebras Pac. J. Math. 248 227-284
  • [8] Blair DE(2011)On the nonexistence of quasi-Einstein metrics Differ. Geom. Appl. 29 93-100
  • [9] Brozos-Vazquez M(2020)Rigidity of quasi-Einstein metrics RACSAM 114 72-311
  • [10] Garcia-Rio E(2012)Quasi-Einstein structures and almost cosymplectic manifolds Comm. Anal. Geom. 20 271-53