Heterojunction impedes ion induced metallization in 2D transition metal dichalcogenides

被引:0
作者
Hammad, Raheel [1 ]
Pradhan, Shuvadip [1 ]
Kumar, Amar [1 ]
Narayanan, Tharangattu N. [1 ]
Ghosh, Soumya [1 ]
机构
[1] Tata Inst Fundamental Res Hyderabad, Hyderabad, Telangana, India
关键词
PHASE-TRANSITION; INTERCALATION; HETEROSTRUCTURES; MECHANISM; EVOLUTION; DYNAMICS;
D O I
10.1038/s41699-025-00550-8
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Layered semiconductor materials such as transition metal dichalcogenides are known to undergo phase transition from the semiconducting (H) to a metallic/quasi-metallic (T/T '\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{T}}/{{\rm{T}}}<^>{{\prime} }$$\end{document}) phase upon ion intercalation, thus changing their physical and electronic properties. Initially, based on a computational set-up that treats both phases (H and T') on the same footing and allows extraction of electron density from lithium intercalated MoS2, we predict that the phase transition can be delayed in MoS2 with almost 1.5 times the amount of cation accommodation while the layers are in contact with another material (MoO3), forming a type-II heterostructure. This important theoretical prediction is then validated via in situ Raman spectroscopy and electron transport measurements, where the concentration of the intercalated Li-ions is controlled by applying an external voltage. The ability to store more Li-ions in the same phase extends the scope of these heterostructures in light driven processes/devices, e.g. photocatalysis, and light-chargeable batteries.
引用
收藏
页数:7
相关论文
共 50 条
[1]  
Baugher BWH, 2014, NAT NANOTECHNOL, V9, P262, DOI [10.1038/NNANO.2014.25, 10.1038/nnano.2014.25]
[2]   Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films [J].
Britnell, L. ;
Ribeiro, R. M. ;
Eckmann, A. ;
Jalil, R. ;
Belle, B. D. ;
Mishchenko, A. ;
Kim, Y. -J. ;
Gorbachev, R. V. ;
Georgiou, T. ;
Morozov, S. V. ;
Grigorenko, A. N. ;
Geim, A. K. ;
Casiraghi, C. ;
Castro Neto, A. H. ;
Novoselov, K. S. .
SCIENCE, 2013, 340 (6138) :1311-1314
[3]   SYNTHESIS AND PROPERTIES OF THIN-FILM POLYMORPHS OF MOLYBDENUM TRIOXIDE [J].
CARCIA, PF ;
MCCARRON, EM .
THIN SOLID FILMS, 1987, 155 (01) :53-63
[4]   Noble-Metal-Free Heterojunction Photocatalyst for Selective CO2 Reduction to Methane upon Induced Strain Relaxation [J].
Das, Risov ;
Sarkar, Shreya ;
Kumar, Ritesh ;
Ramarao, Seethiraju D. ;
Cherevotan, Arjun ;
Jasil, Mohammed ;
Vinod, Chathakudath P. ;
Singh, Abhishek Kumar ;
Peter, Sebastian C. .
ACS CATALYSIS, 2022, 12 (01) :687-697
[5]  
Dresslhaus M., 1986, nato asi series b: Physics
[6]   Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study [J].
Dudarev, SL ;
Botton, GA ;
Savrasov, SY ;
Humphreys, CJ ;
Sutton, AP .
PHYSICAL REVIEW B, 1998, 57 (03) :1505-1509
[7]   Coherent Atomic and Electronic Heterostructures of Single-Layer MoS2 [J].
Eda, Goki ;
Fujita, Takeshi ;
Yamaguchi, Hisato ;
Voiry, Damien ;
Chen, Mingwei ;
Chhowalla, Manish .
ACS NANO, 2012, 6 (08) :7311-7317
[8]   Density-functional study of LixMoS2 intercalates (0 ≤ x ≤ 1) [J].
Enyashin, Andrey N. ;
Seifert, Gotthard .
COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2012, 999 :13-20
[9]   Structural Evolution of Electrochemically Lithiated MoS2 Nanosheets and the Role of Carbon Additive in Li-Ion Batteries [J].
George, Chandramohan ;
Morris, Andrew J. ;
Modarres, Mohammad H. ;
De Volder, Michael .
CHEMISTRY OF MATERIALS, 2016, 28 (20) :7304-7310
[10]   A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu [J].
Grimme, Stefan ;
Antony, Jens ;
Ehrlich, Stephan ;
Krieg, Helge .
JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (15)