Conditions for virtually Cohen-Macaulay simplicial complexes

被引:2
作者
Van Tuyl, Adam [1 ]
Yang, Jay [2 ]
机构
[1] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4L8, Canada
[2] Washington Univ, Dept Math & Stat, St Louis, MO 63130 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
Virtual resolutions; Simplicial complex; Shellable; Cohen-Macaulay;
D O I
10.1016/j.aam.2024.102830
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A simplicial complex Delta is a virtually Cohen-Macaulay simplicial complex if its associated Stanley-Reisner ring S has a virtual resolution, as defined by Berkesch, Erman, and Smith, of length codim(S). We provide a sufficient condition on Delta to be a virtually Cohen-Macaulay simplicial complex. We also introduce virtually shellable simplicial complexes, a generalization of shellable simplicial complexes. Virtually shellable complexes have the property that they are virtually Cohen- Macaulay, generalizing the well-known fact that shellable simplicial complexes are Cohen-Macaulay. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:17
相关论文
共 21 条
[1]  
Almousa A, 2020, Journal of Software for Algebra and Geometry, V10, P51, DOI 10.2140/jsag.2020.10.51
[2]   Homological and combinatorial aspects of virtually Cohen-Macaulay sheaves [J].
Berkesch, Christine ;
Klein, Patricia ;
Loper, Michael C. ;
Yang, Jay .
TRANSACTIONS OF THE LONDON MATHEMATICAL SOCIETY, 2021, 8 (01) :413-434
[3]   Virtual resolutions for a product of projective spaces [J].
Berkesch, Christine ;
Erman, Daniel ;
Smith, Gregory G. .
ALGEBRAIC GEOMETRY, 2020, 7 (04) :460-481
[4]   Shellable nonpure complexes and posets .2. [J].
Bjorner, A ;
Wachs, ML .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (10) :3945-3975
[5]  
Booms-Peot C, 2023, Arxiv, DOI arXiv:2304.04953
[6]   Virtual criterion for generalized Eagon-Northcott complexes [J].
Booms-Peot, Caitlyn ;
Cobb, John .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2022, 226 (12)
[7]  
Brown Michael K., 2023, arXiv:2303.14319
[8]  
Bruce J, 2024, Arxiv, DOI arXiv:2110.10705
[9]  
Cox D.A., 2011, Toric Varieties. Graduate studies in mathematics
[10]  
Favero D, 2023, Arxiv, DOI arXiv:2302.09158