Assimilating Observed Surface Pressure Into ML Weather Prediction Models

被引:4
作者
Slivinski, L. C. [1 ]
Whitaker, J. S. [1 ]
Frolov, S. [1 ]
Smith, T. A. [1 ]
Agarwal, N. [1 ,2 ]
机构
[1] NOAA, OAR Phys Sci Lab, Boulder, CO 80305 USA
[2] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO USA
关键词
machine learning; weather; data assimilation;
D O I
10.1029/2024GL114396
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
There has been a recent surge in development of accurate machine learning (ML) weather prediction models, but evaluation of these models has mainly been focused on medium-range forecasts, not their performance in cycling data assimilation (DA) systems. Cycling DA provides a statistically optimal estimate of the system state, which can then be used as initial conditions for model prediction, given observations and previous model forecasts. Here, real surface pressure observations are assimilated into several popular ML models using an ensemble Kalman filter, where accurate ensemble covariance estimation is essential to constrain unobserved state variables from sparse observations. In this cycling DA system, deterministic ML models accumulate small-scale noise until they diverge. Mitigating this noise with a spectral filter can stabilize the system, but with larger errors than traditional models. Perturbation experiments illustrate that these models do not accurately represent short-term error growth, leading to poor estimation of cross-variable covariances.
引用
收藏
页数:8
相关论文
共 28 条
[1]  
Adrian M, 2024, Arxiv, DOI [arXiv:2405.13180, DOI 10.48550/ARXIV.2405.13180, 10.48550/arXiv.2405.13180]
[2]  
BENJAMIN SG, 1990, MON WEATHER REV, V118, P2099, DOI 10.1175/1520-0493(1990)118<2099:AASLPR>2.0.CO
[3]  
2
[4]   Accurate medium-range global weather forecasting with 3D neural networks [J].
Bi, Kaifeng ;
Xie, Lingxi ;
Zhang, Hengheng ;
Chen, Xin ;
Gu, Xiaotao ;
Tian, Qi .
NATURE, 2023, 619 (7970) :533-+
[5]   On Some Limitations of Current Machine Learning Weather Prediction Models [J].
Bonavita, Massimo .
GEOPHYSICAL RESEARCH LETTERS, 2024, 51 (12)
[6]  
Bonev Boris, P MACHINE LEARNING R
[7]   The Twentieth Century Reanalysis Project [J].
Compo, G. P. ;
Whitaker, J. S. ;
Sardeshmukh, P. D. ;
Matsui, N. ;
Allan, R. J. ;
Yin, X. ;
Gleason, B. E., Jr. ;
Vose, R. S. ;
Rutledge, G. ;
Bessemoulin, P. ;
Broennimann, S. ;
Brunet, M. ;
Crouthamel, R. I. ;
Grant, A. N. ;
Groisman, P. Y. ;
Jones, P. D. ;
Kruk, M. C. ;
Kruger, A. C. ;
Marshall, G. J. ;
Maugeri, M. ;
Mok, H. Y. ;
Nordli, O. ;
Ross, T. F. ;
Trigo, R. M. ;
Wang, X. L. ;
Woodruff, S. D. ;
Worley, S. J. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (654) :1-28
[8]   Feasibility of a 100-year reanalysis using only surface pressure data [J].
Compo, GP ;
Whitaker, JS ;
Sardeshmukh, PD .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2006, 87 (02) :175-+
[9]   Data assimilation in the presence of forecast bias [J].
Dee, DP ;
Da Silva, AM .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 1998, 124 (545) :269-295
[10]  
Hakim G.J., 2024, Artif. I. Earth Sys., DOI [10.1175/AIES-D-23-0090.1.67, DOI 10.1175/AIES-D-23-0090.1]