Electrochemical performance improvement of coin cell lithium-ion lithium manganese dioxide battery

被引:0
|
作者
Shiue, Angus [1 ]
Chin, Kai-Yen [1 ]
Chen, Po-Chou [1 ]
Lin, Jia-Xian [1 ]
Lin, Cheng-Liang [1 ]
Chang, Shu-Mei [1 ]
Leggett, Graham [2 ]
机构
[1] Natl Taipei Univ Technol, Dept Mol Sci & Engn, Sec 3,Chung Hsiao E Rd, Taipei 10608, Taiwan
[2] St Johns Innovat Ctr, LI COR Biosci, Cambridge CB4 0WS, England
关键词
manganese oxide; lithium-ion battery; nonwoven; electrolyte additives; calcination; MNO2; MEMBRANE; SEPARATORS; MECHANISM; ELECTRODE; ALPHA-MNO2; CHALLENGES; OXYGEN; BETA; LIFE;
D O I
10.1093/ijlct/ctaf002
中图分类号
O414.1 [热力学];
学科分类号
摘要
Lithium-manganese oxide batteries are known for their long-term storage capabilities, characterized by low impedance and high discharge capacity. This study aims to enhance these properties by optimizing key battery components. XRD analysis of MnO2 (MD) powder, heat-treated at 400 degrees C for 5 hours, revealed improved discharge capacity. In addition, hot-pressed polypropylene nonwoven separators with electrolyte absorption exceeding 67 mg successfully reduced after-discharge impedance with minimal capacity loss (0.96%-1.26%). Last, the use of electrolyte additives led to a significant reduction in impedance for commercial electrolytes X and Y, contributing to overall battery performance improvement.
引用
收藏
页码:466 / 479
页数:14
相关论文
共 50 条
  • [21] Spatially resolved lithium-ion battery simulations of the influence of lithium-nickel-manganese-cobalt-oxide particle roughness on the electrochemical performance
    Cernak, Susanne
    Gerbig, Felix
    Kespe, Michael
    Nirschl, Hermann
    ENERGY STORAGE, 2020, 2 (05)
  • [22] Lithium-Ion Cell Sorting and Cell Performance Modeling for Spacecraft Battery
    Ananda, S.
    Lakshminarasamma, N.
    Radhakrishna, V
    Sugathan, Reshma
    Pramod, M.
    Srinivasan, M. S.
    Sankaran, M.
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2022, 58 (05) : 6536 - 6545
  • [23] Thermal component for an electrochemical lithium-Ion battery model: Impact and variation on the battery performance
    Ardani, M., I
    Ab Wahid, M.
    Ab Talib, M. H.
    Daud, Z. H. Che
    Asus, Z.
    Ariff, M. A. M.
    MATERIALS TODAY-PROCEEDINGS, 2021, 39 : 1006 - 1009
  • [24] Lithium-Ion Battery
    Bullis, Kevin
    TECHNOLOGY REVIEW, 2012, 115 (04) : 79 - 79
  • [25] Design of cell spacing in lithium-ion battery module for improvement in cooling performance of the battery thermal management system
    Kirad, Kumar
    Chaudhari, Mangesh
    JOURNAL OF POWER SOURCES, 2021, 481
  • [26] Improved electrochemical performance of zinc oxide coated lithium manganese silicate electrode for lithium-ion batteries
    Zhu, Jiangtao
    Tang, Haoqing
    Tang, Zhiyuan
    Ma, Chenxiang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 633 : 194 - 200
  • [27] Preparation and electrochemical performance of tantalum-doped lithium titanate as anode material for lithium-ion battery
    Hu Guo-rong
    Zhang Xin-long
    Peng Zhong-dong
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2011, 21 (10) : 2248 - 2253
  • [28] Design modeling of lithium-ion battery performance
    Nelson, P
    Bloom, I
    Amine, K
    Henriksen, G
    JOURNAL OF POWER SOURCES, 2002, 110 (02) : 437 - 444
  • [29] Blending Lithium Nickel Manganese Cobalt Oxide with Lithium Iron Manganese Phosphate as Cathode Materials for Lithium-ion Batteries with Enhanced Electrochemical Performance
    Shiozaki, Mayu
    Yamashita, Hiroki
    Hirayama, Yuko
    Ogami, Takaaki
    Kanamura, Kiyoshi
    ELECTROCHEMISTRY, 2023, 91 (07)
  • [30] Electrochemical properties of lithium vanadium oxide as an anode material for lithium-ion battery
    Choi, Nam-Soon
    Kim, Joon-Sup
    Yin, Ri-Zhu
    Kim, Sung-Soo
    MATERIALS CHEMISTRY AND PHYSICS, 2009, 116 (2-3) : 603 - 606