Dimension Bounds on Classes of Interval Orders with Restricted Representation

被引:0
|
作者
Biro, Csaba [1 ]
Wan, Sida [1 ]
机构
[1] Univ Louisville, Dept Math, Louisville, KY 40220 USA
关键词
Interval order; Dimension; Interval count;
D O I
10.1007/s00373-024-02863-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In general, representations of interval orders may use an arbitrary set of interval lengths. We can define subclasses of interval orders by restricting the allowable lengths of intervals. Motivated by a recent paper of Keller, Trenk, and Young, we study the dimension of posets in some of these subclasses. Among other results, we answer several of their questions, and we simplify the proof of one of their main results.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] DIMENSION AND INTERVAL DIMENSION OF CERTAIN BIPARTITE ORDERED SETS
    Bae, Deok Rak
    Lee, Jeh Gwon
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (01) : 79 - 86
  • [32] INTERVAL DIMENSION AND MACNEILLE COMPLETION
    HABIB, M
    MORVAN, M
    POUZET, M
    RAMPON, JX
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1993, 10 (02): : 147 - 151
  • [33] Operational Semantics, Interval Orders and Sequences of Antichains
    Janicki, Ryszard
    Koutny, Maciej
    FUNDAMENTA INFORMATICAE, 2019, 169 (1-2) : 31 - 55
  • [34] Decomposing labeled interval orders as pairs of permutations
    Claesson, Anders
    Hannah, Stuart A.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (04)
  • [35] Inductive Characterizations of Finite Interval Orders and Semiorders
    Leblet, Jimmy
    Rampon, Jean-Xavier
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2009, 26 (03): : 277 - 281
  • [36] On the maximization of menu-dependent interval orders
    Juan P. Aguilera
    Levent Ülkü
    Social Choice and Welfare, 2017, 48 : 357 - 366
  • [37] Inductive Characterizations of Finite Interval Orders and Semiorders
    Jimmy Leblet
    Jean-Xavier Rampon
    Order, 2009, 26 : 277 - 281
  • [38] A loopless algorithm for generation of basic minimal interval orders
    LaFollette, PS
    Korsh, JF
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2000, 17 (03): : 271 - 285
  • [39] A refined analysis on the jump number problem of interval orders
    Yuan, Chen
    Kan, Haibin
    INFORMATION PROCESSING LETTERS, 2015, 115 (11) : 797 - 800
  • [40] Elementary classes of finite VC-dimension
    Domenico Zambella
    Archive for Mathematical Logic, 2015, 54 : 511 - 520