Suppression and synchronization of chaos in uncertain time-delay physical system

被引:1
作者
Ahmad, Israr [1 ]
Shafiq, Muhammad [2 ]
机构
[1] Univ Technol & Appl Sci, Dept Preparatory Studies Ctr, Nizwa, Oman
[2] Sultan Qaboos Univ, Dept Elect & Comp Engn, Seeb, Oman
关键词
chaotic horizontal platform system; chaos suppression; chaos synchronization; robust adaptive control; Lyapunov stability theory;
D O I
10.1007/s11766-024-3821-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The mechanical horizontal platform (MHP) system exhibits a rich chaotic behavior. The chaotic MHP system has applications in the earthquake and offshore industries. This article proposes a robust adaptive continuous control (RACC) algorithm. It investigates the control and synchronization of chaos in the uncertain MHP system with time-delay in the presence of unknown state-dependent and time-dependent disturbances. The closed-loop system contains most of the nonlinear terms that enhance the complexity of the dynamical system; it improves the efficiency of the closed-loop. The proposed RACC approach (a) accomplishes faster convergence of the perturbed state variables (synchronization errors) to the desired steady-state, (b) eradicates the effect of unknown state-dependent and time-dependent disturbances, and (c) suppresses undesirable chattering in the feedback control inputs. This paper describes a detailed closed-loop stability analysis based on the Lyapunov-Krasovskii functional theory and Lyapunov stability technique. It provides parameter adaptation laws that confirm the convergence of the uncertain parameters to some constant values. The computer simulation results endorse the theoretical findings and provide a comparative performance.
引用
收藏
页码:416 / 437
页数:22
相关论文
共 50 条
[21]   Chaos suppression of uncertain gyros in a given finite time [J].
Aghababa, Mohammad Pourmahmood ;
Aghababa, Hasan Pourmahmood .
CHINESE PHYSICS B, 2012, 21 (11)
[22]   Chaos suppression of uncertain gyros in a given finite time [J].
Mohammad Pourmahmood Aghababa ;
Hasan Pourmahmood Aghababa .
Chinese Physics B, 2012, 21 (11) :128-133
[23]   Chaos synchronization and duration time of a class of uncertain chaotic systems [J].
Bowong, Samuel ;
Kakmeni, Moukam ;
Koina, Rodoumta .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2006, 71 (03) :212-228
[24]   PID Control Law for Trajectory Tracking Error Using Time-Delay Adaptive Neural Networks for Chaos Synchronization [J].
Perez, Joel P. ;
Perez, Jose P. .
COMPUTACION Y SISTEMAS, 2015, 19 (02) :399-405
[25]   Chaos Suppression via Integrative Time Delay Control [J].
Arafa, Ayman A. ;
Xu, Yong ;
Mahmoud, Gamal M. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (14)
[26]   Global exponential synchronization between Lu system and Chen system with unknown parameters and channel time-delay [J].
Ma Tie-Dong ;
Fu Jie .
CHINESE PHYSICS B, 2011, 20 (05)
[27]   Global exponential synchronization between Lü system and Chen system with unknown parameters and channel time-delay [J].
马铁东 ;
浮洁 .
Chinese Physics B, 2011, (05) :208-213
[28]   Synchronization and Circuit Experiment Simulation of Chaotic Time-delay Systems [J].
Zhang Xiao-hong ;
Cui Zhi-yong ;
Zhu Yuan-yuan .
PROCEEDINGS OF THE 2009 PACIFIC-ASIA CONFERENCE ON CIRCUITS, COMMUNICATIONS AND SYSTEM, 2009, :781-784
[29]   Chaos synchronization in multiple time delay electrooptical semiconductor lasers [J].
Shahverdiev, E. M. ;
Shore, K. A. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2007, 21 (31) :5207-5219
[30]   Chaos synchronization of stochastic time-delay Lur'e systems: An asynchronous and adaptive event-triggered control approach [J].
Li, Xinling ;
Qin, Xueli ;
Wan, Zhiwei ;
Tai, Weipeng .
ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (09) :5589-5608