A spatial-temporal graph attention network for protein-ligand binding affinity prediction based on molecular geometry

被引:0
作者
Li, Gaili [1 ]
Yuan, Yongna [1 ]
Zhang, Ruisheng [1 ]
机构
[1] Lanzhou Univ, Sch Informat Sci Engn, Lanzhou 730000, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
3D protein-ligand binding affinity; Graph convolutions networks; Global attention module; Binding affinity prediction; SCORING FUNCTIONS; NEURAL-NETWORK; AUTODOCK VINA; DOCKING;
D O I
10.1007/s00530-024-01650-z
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurately estimating the binding strength between proteins and ligands is fundamental in the field of pharmaceutical research and innovation. Previous research has largely concentrated on 1D or 2D molecular descriptors, often neglecting the pivotal 3D features of molecules that profoundly impact drug properties and target binding. This oversight has resulted in diminished predictive performance in molecule-related analyses. A comprehensive grasp of molecular properties necessitates the integration of both local and global molecular information. In this paper, we introduce a deep-learning model, termed PLGAs, which represents molecular systems as graphs based on the three-dimensional configurations of protein-ligand complexes. PLGAs consist of two components: Graph Convolution Networks (GCN) and a Global Attention Mechanism (GAM) network. Specifically, GCNs learn both the graph structure and node attribute information, capturing local and global information to better represent node features. GAM is then used to gather interactive edges by reducing information loss and amplifying global interactions. PLGAs were tested on the standard PDBbind refined set (v.2019) and core set (v.2016). The model demonstrated a Spearman's correlation coefficient of 0.823 on the refined set and an RMSE (Root Mean Square Error) of 1.211 kcal/mol between experimental and predicted affinities on the core set, surpassing several advanced contemporary binding affinity prediction methods. We further evaluated the efficacy of various components within our model, and the marked improvements in accuracy underscore the potential of PLGAs to significantly enhance the drug development process. Python scripts implementing various components of models are available at https://github.com/ligaili01/PLGAs.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Importance of Ligand Reorganization Free Energy in Protein-Ligand Binding-Affinity Prediction
    Yang, Chao-Yie
    Sun, Haiying
    Chen, Jianyong
    Nikolovska-Coleska, Zaneta
    Wang, Shaomeng
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (38) : 13709 - 13721
  • [22] A machine learning approach towards the prediction of protein-ligand binding affinity based on fundamental molecular properties
    Kundu, Indra
    Paul, Goutam
    Banerjee, Raja
    RSC ADVANCES, 2018, 8 (22) : 12127 - 12137
  • [23] SGNet: Sequence-Based Convolution and Ligand Graph Network for Protein Binding Affinity Prediction
    Chen, Peng
    Shen, Huimin
    Zhang, Youzhi
    Wang, Bing
    Gu, Pengying
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (05) : 3257 - 3266
  • [24] SE-OnionNet: A Convolution Neural Network for Protein-Ligand Binding Affinity Prediction
    Wang, Shudong
    Liu, Dayan
    Ding, Mao
    Du, Zhenzhen
    Zhong, Yue
    Song, Tao
    Zhu, Jinfu
    Zhao, Renteng
    FRONTIERS IN GENETICS, 2021, 11
  • [25] A multi-graph spatial-temporal attention network for air-quality prediction
    Chen, Xiaoxia
    Hu, Yue
    Dong, Fangyan
    Chen, Kewei
    Xia, Hanzhong
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 181 : 442 - 451
  • [26] BoostSF-SHAP: Gradient boosting-based software for protein-ligand binding affinity prediction with explanations
    Chen, Xingqian
    Song, Shuangbao
    Song, Zhenyu
    Song, Shuangyu
    Ji, Junkai
    NEUROCOMPUTING, 2025, 622
  • [27] Water Network-Augmented Two-State Model for Protein-Ligand Binding Affinity Prediction
    Qu, Xiaoyang
    Dong, Lina
    Luo, Ding
    Si, Yubing
    Wang, Binju
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 64 (07) : 2263 - 2274
  • [28] A point cloud-based deep learning strategy for protein-ligand binding affinity prediction
    Wang, Yeji
    Wu, Shuo
    Duan, Yanwen
    Huang, Yong
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (01)
  • [29] Structure-based, deep-learning models for protein-ligand binding affinity prediction
    Wang, Debby D.
    Wu, Wenhui
    Wang, Ran
    JOURNAL OF CHEMINFORMATICS, 2024, 16 (01)
  • [30] Improving structure-based protein-ligand affinity prediction by graph representation learning and ensemble learning
    Guo, Jia
    PLOS ONE, 2024, 19 (01):