Existence and Uniqueness of Periodic Solutions for Some Nonlinear ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}-Fractional Coupled SystemsExistence and Uniqueness of Periodic Solutions...D. Benzenati et al.

被引:0
作者
Djilali Benzenati [1 ]
Soufyane Bouriah [2 ]
Abdelkrim Salim [2 ]
Mouffak Benchohra [3 ]
机构
[1] Djillali Liabes University,Laboratory of Mathematics
[2] Hassiba Benbouali University,Department of Mathematics
[3] Hassiba Benbouali University,Laboratory of Mathematics and Applications
[4] Hassiba Benbouali University,Faculty of Technology
关键词
Coincidence degree theory; Existence; Uniqueness; Coupled system; -Caputo fractional derivative; 34A08; 34B10; 34B40;
D O I
10.1007/s10013-024-00682-2
中图分类号
学科分类号
摘要
This paper deals with the existence and uniqueness of periodic solutions for a nonlinear fractional pantograph coupled system with ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}-Caputo derivative. We employ the coincidence degree theory of Mawhin to established our proofs. An illustration will be presented to demonstrate the validity of the given result.
引用
收藏
页码:389 / 406
页数:17
相关论文
empty
未找到相关数据