Existence and Uniqueness of Periodic Solutions for Some Nonlinear ψ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\psi $$\end{document}-Fractional Coupled SystemsExistence and Uniqueness of Periodic Solutions...D. Benzenati et al.
被引:0
作者:
Djilali Benzenati
论文数: 0引用数: 0
h-index: 0
机构:
Djillali Liabes University,Laboratory of MathematicsDjillali Liabes University,Laboratory of Mathematics
Djilali Benzenati
[1
]
Soufyane Bouriah
论文数: 0引用数: 0
h-index: 0
机构:
Hassiba Benbouali University,Department of MathematicsDjillali Liabes University,Laboratory of Mathematics
Soufyane Bouriah
[2
]
Abdelkrim Salim
论文数: 0引用数: 0
h-index: 0
机构:
Hassiba Benbouali University,Department of MathematicsDjillali Liabes University,Laboratory of Mathematics
Abdelkrim Salim
[2
]
Mouffak Benchohra
论文数: 0引用数: 0
h-index: 0
机构:
Hassiba Benbouali University,Laboratory of Mathematics and ApplicationsDjillali Liabes University,Laboratory of Mathematics
Mouffak Benchohra
[3
]
机构:
[1] Djillali Liabes University,Laboratory of Mathematics
[2] Hassiba Benbouali University,Department of Mathematics
[3] Hassiba Benbouali University,Laboratory of Mathematics and Applications
[4] Hassiba Benbouali University,Faculty of Technology
This paper deals with the existence and uniqueness of periodic solutions for a nonlinear fractional pantograph coupled system with ψ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\psi $$\end{document}-Caputo derivative. We employ the coincidence degree theory of Mawhin to established our proofs. An illustration will be presented to demonstrate the validity of the given result.