In this article we study covering spaces of symplectic toric orbifolds and symplectic toric orbifold bundles. In particular, we show that all symplectic toric orbifold coverings are quotients of some symplectic toric orbifold by a finite subgroup of a torus. We then give a general description of the labeled polytope of a toric orbifold bundle in terms of the polytopes of the fiber and the base. Finally, we apply our findings to study the number of toric structures on products of labeled projective spaces.