Asymptotic formula of Fourier coefficients of cusp forms over sum of two squares

被引:0
作者
Feng, Jinzhi [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
关键词
Cusp forms; Fourier coefficients; Symmetric power L-functions; Dirichlet character;
D O I
10.1007/s11139-024-01000-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let lambda f(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{f}(n)$$\end{document} be the nth normalized Fourier coefficient of the primitive holomorphic Hecke eigenforms of even integral weight k >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 2$$\end{document} for the full modular group SL(2,Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SL(2,\mathbb {Z})$$\end{document}. In this paper, we investigate the asymptotic formula of the power sum & sum;n <= x lambda fl(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{n \le x} \lambda <^>{l}_{f}(n)$$\end{document} for l=2m >= 6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l=2m \ge 6$$\end{document} and & sum;a2+b2 <= x lambda fl(a2+b2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{a<^>{2}+b<^>{2}\le x} \lambda <^>{l}_{f} (a<^>{2}+b<^>{2})$$\end{document} for l=2m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l=2m $$\end{document}, and improve on previous error estimates.
引用
收藏
页数:13
相关论文
共 19 条
[1]  
Deligne P., 1974, Publications Mathematiques de l'IHES, V43, P273
[2]  
Fomenko O.M., 1997, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), V237, P194
[3]  
Graham S W., 1991, Van der Corputs Method of Exponential Sums, V126, DOI [10.1017/CBO9780511661976, DOI 10.1017/CBO9780511661976]
[4]   A new kth derivative estimate for exponential sums via Vinogradov's mean value [J].
Heath-Brown, D. R. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2017, 296 (01) :88-103
[5]   On the Rankin-Selberg problem [J].
Huang, Bingrong .
MATHEMATISCHE ANNALEN, 2021, 381 (3-4) :1217-1251
[6]  
Ivic A., 2014, TOPICS MATH ANAL APP, V94, P461
[7]  
Iwaniec H., 2004, Analytic number theory, V53
[8]   Integral power sums of Hecke eigenvalues [J].
Lau, Y. -K. ;
Lu, G. -S. ;
Wu, J. .
ACTA ARITHMETICA, 2011, 150 (02) :193-207
[9]   Strong Subconvexity for Self-Dual GL(3) L-Functions [J].
Lin, Yongxiao ;
Nunes, Ramon ;
Qi, Zhi .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (13) :11453-11470
[10]   On the Asymptotic Distribution of Fourier Coefficients of Cusp Forms [J].
Liu, Huafeng .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2023, 54 (02)