Convergence Almost Everywhere of Partial Sums and Féjer Means of Vilenkin-Fourier Series

被引:1
作者
Areshidze, N. [1 ]
Persson, L. -e. [2 ,3 ]
Tephnadze, G. [4 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92617 USA
[2] UiT Arctic Univ Norway, POB 385, N-8505 Narvik, Norway
[3] Uppsala Univ, Dept Math, POB 480 751 06, S-75238 Uppsala, Sweden
[4] Univ Georgia, Sch Sci & Technol, 77a Merab Kostava St, Tbilisi 0171, Georgia
关键词
Fourier analysis; Vilenkin-Fourier series; Subsequences; Almost everywhere convergence; F & eacute; jer means; Divergence on a set of measure zero; FEJER MEANS; DIVERGENCE; SETS; RESPECT; SUMMABILITY; SYSTEMS;
D O I
10.1007/s00009-024-02783-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize subsequences {S-nk} of partial sums with respect to (bounded or unbounded) Vilenkin systems of f is an element of L-1(Gm) for which almost everywhere convergence holds. Moreover, we construct an explicit f is an element of L-p(G(m)), 1 <= p < infinity whose partial sums (satisfying the same conditions which guarantee almost everywhere convergence) diverges on any set of measure zero. We also prove a similar divergence result for Vilenkin-Fejer means.
引用
收藏
页数:17
相关论文
共 50 条
[41]   CONVERGENCE ALMOST EVERYWHERE OF MULTIPLE FOURIER SERIES OVER CUBES [J].
Mastylo, Mieczyslaw ;
Rodriguez-Piazza, Luis .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (03) :1629-1659
[42]   On the Almost Everywhere Convergence of Multiple Fourier-Haar Series [J].
G. G. Oniani ;
F. Tulone .
Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2019, 54 :288-295
[43]   On the Almost Everywhere Convergence of Multiple Fourier-Haar Series [J].
Oniani, G. G. ;
Tulone, F. .
JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2019, 54 (05) :288-295
[44]   The surprising almost everywhere convergence of Fourier-Neumann series [J].
Ciaurri, Oscar ;
Luis Varona, Juan .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 233 (03) :663-666
[45]   Almost Everywhere Strong Summability of Fej,r Means of Rectangular Partial Sums of Two-dimensional Walsh-Fourier Series [J].
Goginava, U. .
JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2018, 53 (02) :100-112
[46]   BMO-Estimation and Almost Everywhere Exponential Summability of Quadratic Partial Sums of Double Fourier Series [J].
U. Goginava ;
L. Gogoladze ;
G. Karagulyan .
Constructive Approximation, 2014, 40 :105-120
[47]   BMO-Estimation and Almost Everywhere Exponential Summability of Quadratic Partial Sums of Double Fourier Series [J].
Goginava, U. ;
Gogoladze, L. ;
Karagulyan, G. .
CONSTRUCTIVE APPROXIMATION, 2014, 40 (01) :105-120
[48]   Vilenkin-Lebesgue Points and Almost Everywhere Convergence for Some Classical Summability Methods [J].
Nadirashvili, Nato ;
Persson, Lars-Erik ;
Tephnadze, George ;
Weisz, Ferenc .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (05)
[49]   APPLICATIONS OF HOLDER'S AND JENSEN'S INEQUALITIES IN STUDYING THE β-ABSOLUTE CONVERGENCE OF VILENKIN-FOURIER SERIES [J].
Ghodadra, Bhikha Lila .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (02) :749-760
[50]   ALMOST EVERYWHERE CONVERGENCE OF DYADIC TRIANGULAR-FEJER MEANS OF TWO-DIMENSIONAL WALSH-FOURIER SERIES [J].
Gat, Gyorgy ;
Goginava, Ushangi .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (02) :401-415