Convergence Almost Everywhere of Partial Sums and Féjer Means of Vilenkin-Fourier Series

被引:0
|
作者
Areshidze, N. [1 ]
Persson, L. -e. [2 ,3 ]
Tephnadze, G. [4 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92617 USA
[2] UiT Arctic Univ Norway, POB 385, N-8505 Narvik, Norway
[3] Uppsala Univ, Dept Math, POB 480 751 06, S-75238 Uppsala, Sweden
[4] Univ Georgia, Sch Sci & Technol, 77a Merab Kostava St, Tbilisi 0171, Georgia
关键词
Fourier analysis; Vilenkin-Fourier series; Subsequences; Almost everywhere convergence; F & eacute; jer means; Divergence on a set of measure zero; FEJER MEANS; DIVERGENCE; SETS; RESPECT; SUMMABILITY; SYSTEMS;
D O I
10.1007/s00009-024-02783-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize subsequences {S-nk} of partial sums with respect to (bounded or unbounded) Vilenkin systems of f is an element of L-1(Gm) for which almost everywhere convergence holds. Moreover, we construct an explicit f is an element of L-p(G(m)), 1 <= p < infinity whose partial sums (satisfying the same conditions which guarantee almost everywhere convergence) diverges on any set of measure zero. We also prove a similar divergence result for Vilenkin-Fejer means.
引用
收藏
页数:17
相关论文
共 50 条