The importance of boundary evolution for solar-wind modelling

被引:0
|
作者
Owens, Mathew J. [1 ]
Barnard, Luke [1 ]
Arge, Charles N. [2 ]
机构
[1] Univ Reading, Dept Meteorol, Earley Gate, Reading RG6 6BB, Berks, England
[2] NASA, Solar Phys Lab, GSFC, Mail Code 671, Greenbelt, MD 20771 USA
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
基金
英国科学技术设施理事会;
关键词
SPACE WEATHER; INTERPLANETARY; TIME; SIMULATIONS; STREAMS; CORONA; SUN;
D O I
10.1038/s41598-024-80162-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The solar wind is a continual outflow of plasma and magnetic field from the Sun's upper atmosphere-the corona-that expands to fills the solar system. Variability in the near-Earth solar-wind conditions can produce adverse space weather that impacts ground- and space-based technologies. Consequently, numerical fluid models of the solar wind are used to forecast conditions a few days ahead. The solar-wind inner-boundary conditions are supplied by models of the corona that are, in turn, constrained by observations of the photospheric magnetic field. While solar eruptions-coronal mass ejections (CMEs)-are treated as time-dependent structures, a single coronal "snapshot" is typically used to determine the ambient solar-wind for a complete model run. Thus, all available time-history information from previous coronal-model solutions is discarded and the solar wind is treated as a steady-state flow, unchanging in the rotating frame of the Sun. In this study, we use 1 year of daily-updated coronal-model solutions to comprehensively compare steady-state solar-wind modelling with a time-dependent method. We demonstrate, for the first time, how the SS approach can fundamentally misrepresent the accuracy of coronal models. We also attribute three key problems with current space-weather forecasting directly to the steady-state approach: (1) the seemingly paradoxical result that forecasts based on observations from 3-days previous are more accurate than forecasts based on the most recent observations; (2) high inconsistency, with forecasts for a given day jumping significantly as new observations become available, changing CME propagation times by up to 17 h; and (3) insufficient variability in the heliospheric magnetic field, which controls solar energetic particle propagation to Earth. The time-dependent approach is shown to alleviate all three issues. It provides a consistent, physical solution which more accurately represents the information present in the coronal models. By incorporating the time history in the solar wind along the Sun-Earth line, the time-dependent approach will provide improvements to forecasting CME propagation to Earth.
引用
收藏
页数:12
相关论文
共 50 条