Solitons and other solutions to the extended Gerdjikov–Ivanov equation in DWDM system by the exp(-ϕ(ζ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\exp (-\phi (\zeta ))$$\end{document}-expansion method

被引:0
作者
Saleh M. Hassan [1 ]
Abdulmalik A. Altwaty [2 ]
机构
[1] Ain Shams University,Department of Mathematics, Faculty of Science
[2] University of Benghazi,Department of Mathematics, Faculty of Science
关键词
Gerdjikov–Ivanov model; DWDM system; Kerr law; Parabolic law; The ; -expansion method; Soliton solutions; 39A14; 35Q55; 35C05; 35C08;
D O I
10.1007/s11587-022-00701-9
中图分类号
学科分类号
摘要
The extended Gerdjikov–Ivanov equation in dense wavelength division multiplexed system for both kerr and parabolic law nonlinearities have been studied using the exp(-ϕ(ζ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\exp (-\phi (\zeta ))$$\end{document}-expansion method. Completely new parameterized travel wave solutions are extracted. When special values are assigned to the parameters, Kink soliton solutions, periodic soliton solutions, and rational function solutions are derived. Figures have been added to indicate the behavior of solutions in some selected cases.
引用
收藏
页码:2397 / 2410
页数:13
相关论文
共 50 条
[41]   Spherical designs and modular forms of the D4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_4$$\end{document} lattice [J].
Masatake Hirao ;
Hiroshi Nozaki ;
Koji Tasaka .
Research in Number Theory, 2023, 9 (4)
[43]   Quasi-Grammian soliton and kink dynamics of an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document}-component semidiscrete coupled integrable system [J].
A. Inam ;
M. ul Hassan .
Theoretical and Mathematical Physics, 2024, 221 (1) :1650-1674
[45]   Testing efficiency of the generalised G′/G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {{{G}'}/G} \right) $$\end{document}-expansion method for solving nonlinear evolution equations [J].
G C Paul ;
A H M Rashedunnabi ;
M D Haque .
Pramana, 2019, 92 (2)
[46]   Inexact Fixed-Point Proximity Algorithm for the ℓ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _0$$\end{document} Sparse Regularization Problem [J].
Ronglong Fang ;
Yuesheng Xu ;
Mingsong Yan .
Journal of Scientific Computing, 2024, 100 (2)
[47]   N-soliton solutions for a variable coefficient trihydrogen chain α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-helix protein system with gain or loss terms [J].
Xin Wang ;
Ling-Ling Zhang .
Nonlinear Dynamics, 2023, 111 (22) :21241-21257
[48]   Wronskian, Pfaffian and periodic wave solutions for a (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2 + 1)$$\end{document}-dimensional extended shallow water wave equation [J].
Qian-Min Huang ;
Yi-Tian Gao .
Nonlinear Dynamics, 2017, 89 (4) :2855-2866
[50]   Optical soliton solutions to the (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(2+1)$\end{document}-dimensional Chaffee–Infante equation and the dimensionless form of the Zakharov equation [J].
M. Ali Akbar ;
Norhashidah Hj. Mohd. Ali ;
Jobayer Hussain .
Advances in Difference Equations, 2019 (1)