共 50 条
- [31] Superadditivity relations of the l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_1$$\end{document} norm of coherence [J]. Quantum Information Processing, 2018, 17 (1)
- [32] The Neumann Problem for the k-Cauchy–Fueter Complex over k-Pseudoconvex Domains in R4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^4$$\end{document} and the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} Estimate [J]. The Journal of Geometric Analysis, 2019, 29 (2) : 1233 - 1258
- [33] The modified multiple (G′/G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$G^{\prime }/G$\end{document})-expansion method and its application to Sharma–Tasso–Olver equation [J]. Pramana, 2014, 83 (1) : 95 - 105
- [34] Bernoulli (G′/G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G'/G)$$\end{document}-expansion method for nonlinear Schrödinger equation under effect of constant potential [J]. Optical and Quantum Electronics, 2021, 53 (6)
- [35] Exact analytical solutions to the geodesic equations in general relativity via (G′/G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G'/G)$$\end{document} - expansion method [J]. General Relativity and Gravitation, 2022, 54 (8)
- [36] Dynamics Investigation and Solitons Formation for (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2+1)$$\end{document} -Dimensional Zoomeron Equation and Foam Drainage Equation [J]. Journal of Nonlinear Mathematical Physics, 2023, 30 (2) : 628 - 645
- [37] ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\partial }$$\end{document}-dressing method to PT-symmetric multi-component nonlinear Schrödinger equation [J]. Nonlinear Dynamics, 2024, 112 (5) : 3707 - 3724
- [38] A Vector General Nonlinear Schrödinger Equation with (m+n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m+n)$$\end{document} Components [J]. Journal of Nonlinear Science, 2020, 30 (3) : 991 - 1013
- [39] Soliton solutions of the generalized Klein–Gordon equation by using G′G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \frac{G^{\prime }}{G}\right) $$\end{document}-expansion method [J]. Computational and Applied Mathematics, 2014, 33 (3) : 831 - 839
- [40] ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\partial }$$\end{document} cohomology of the complement of a semi-positive anticanonical divisor of a compact surface [J]. Mathematische Zeitschrift, 2024, 308 (2)