On the Behavior of Solutions of the Cauchy Problem for a Hyperbolic Equation with Periodic Coefficients. The Principle of the Limiting Amplitude

被引:0
作者
Ishkhanyan, A. M. [1 ]
Matevossian, H. A. [2 ]
机构
[1] Natl Acad Sci, Inst Phys Res, Ashtarak 0204, Armenia
[2] Russian Acad Sci, Fed Res Ctr Comp Sci & Control, Moscow 119333, Russia
关键词
asymptotic behavior of solutions; hyperbolic equation; periodic coefficients; Cauchy problem; Hill operator; principle of the limiting amplitude;
D O I
10.1134/S1995080224604326
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper considers the Cauchy problem for a second-order hyperbolic equation with periodic coefficients and zero initial data, and the right-hand side of the equation is the function f(x) exp{-i omega t}, omega > 0. For this problem, the limiting amplitude principle and the asymptotic behavior as t -> infinity are established.
引用
收藏
页码:3548 / 3558
页数:11
相关论文
共 20 条
  • [1] About a question of intrinsic value theory.
    Ambarzumian, V.
    [J]. ZEITSCHRIFT FUR PHYSIK, 1929, 53 (9-10): : 690 - 695
  • [2] Coddington Earl A., 1955, THEORY ORDINARY DIFF
  • [3] Eastham M.S.P., 1973, SPECTRAL THEORY PERI
  • [4] SCHRODINGER EQUATION WITH A PERIODIC POTENTIAL
    EASTHAM, MSP
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURG SECTION A-MATHEMATICAL AND PHYSICAL SCIENCES, 1971, 69 : 125 - &
  • [5] Hochstadt H., 1965, Arch. Rational Mech. Anal, V19, P353, DOI DOI 10.1007/BF00253484
  • [6] Hochstadt H., 1963, MATH Z, V82, P237, DOI [DOI 10.1007/BF01111426, 10.1007/BF01111426]
  • [7] Asymptotic Behavior of Solutions of the Initial Boundary Value Problem for a Hyperbolic Equation with Periodic Coefficients on the Semi-Axis
    Matevossian, H. A.
    Nordo, G.
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (06) : 2398 - 2412
  • [8] Matevossian H.A., 2020, DEV NOVEL APPROACHES, V130, P29
  • [9] Behavior as t → ∞ of Solutions of a Mixed Problem for a Hyperbolic Equation with Periodic Coefficients on the Semi-Axis
    Matevossian, Hovik A.
    Smirnov, Vladimir Yu.
    [J]. SYMMETRY-BASEL, 2023, 15 (03):
  • [10] Asymptotic Behavior of Solutions of the Cauchy Problem for a Hyperbolic Equation with Periodic Coefficients II
    Matevossian, Hovik A.
    Korovina, Maria, V
    Vestyak, Vladimir A.
    [J]. AXIOMS, 2022, 11 (09)