Fuzzy clustering with Barber modularity regularization

被引:1
作者
D'Urso, Pierpaolo [1 ]
De Giovanni, Livia [2 ,3 ]
Federico, Lorenzo [2 ,3 ]
Vitale, Vincenzina [1 ]
机构
[1] Sapienza Univ, Dept Social Sci & Econ, Piazzale Aldo Moro 5, I-00185 Rome, Lazio, Italy
[2] Luiss Univ, Dept Polit Sci, Viale Romania 32, I-00197 Rome, Lazio, Italy
[3] Luiss Univ, Data Lab, Viale Pola 12, I-00198 Rome, Lazio, Italy
关键词
Fuzzy C-medoids clustering; Bipartite networks; Community detection; Entropy term;
D O I
10.1007/s11222-024-10495-5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we propose a new algorithm for the joint clustering of two sets of statistical units N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}$$\end{document} and M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} which are also equipped with an adjacency structure which is represented by a bipartite network. Our model is based on the fuzzy Partition Around Medoids, and it combines it with techniques for community detection in bipartite complex networks based on Barber modularity maximization. The goal is to produce a partition of N boolean OR M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}\cup \mathcal {M}$$\end{document} into clusters, each of which is also identified by two medoids, one in N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}$$\end{document} and one in M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}, which represent the typical units in the cluster for each set. Such clusters are optimized so that units in the same cluster both have similar values on their attributes and are likely to be adjacent. We test the algorithm on both simulated and real data, to show how it is able to capture a wide range of different interactions between the distribution of the attributes and the network structure.
引用
收藏
页数:34
相关论文
共 36 条
[1]  
Airoldi EM, 2008, J MACH LEARN RES, V9, P1981
[2]   Modularity and community detection in bipartite networks [J].
Barber, Michael J. .
PHYSICAL REVIEW E, 2007, 76 (06)
[3]   ABSTRACTION AND PATTERN CLASSIFICATION [J].
BELLMAN, R ;
KALABA, R ;
ZADEH, L .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1966, 13 (01) :1-&
[4]  
Bezdek J. C., 1981, Pattern recognition with fuzzy objective function algorithms
[5]   NUMERICAL TAXONOMY WITH FUZZY SETS [J].
BEZDEK, JC .
JOURNAL OF MATHEMATICAL BIOLOGY, 1974, 1 (01) :57-71
[6]   Fast unfolding of communities in large networks [J].
Blondel, Vincent D. ;
Guillaume, Jean-Loup ;
Lambiotte, Renaud ;
Lefebvre, Etienne .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
[7]   On modularity clustering [J].
Brandes, Ulrik ;
Delling, Daniel ;
Gaertler, Marco ;
Goerke, Robert ;
Hoefer, Martin ;
Nikoloski, Zoran ;
Wagner, Dorothea .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2008, 20 (02) :172-188
[8]  
Clauset A, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.066111
[9]   Fuzzy unsupervised classification of multivariate time trajectories with the Shannon entropy [J].
Coppi, R ;
D'Urso, P .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (06) :1452-1477
[10]   Fuzzy clustering of spatial interval-valued data [J].
D'Urso, Pierpaolo ;
De Giovanni, Livia ;
Federico, Lorenzo ;
Vitale, Vincenzina .
SPATIAL STATISTICS, 2023, 57