Comparative analysis of seasonal wind power using Weibull, Rayleigh and Champernowne distributions

被引:0
作者
Ndeba, Bienvenu Sumaili [1 ,2 ]
El Alani, Omaima [2 ]
Ghennioui, Abdellatif [2 ]
Benzaazoua, Mostafa [1 ]
机构
[1] Mohammed VI Polytech Univ, Geol & Sustainable Min Inst GSMI, Ben Guerir, Morocco
[2] IRESEN, Green Energy Pk Res Platform GEP, UM6P, BenGuerir, Morocco
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Champernowne distribution; Wind energy potential; Weibull distribution; Power density analysis; PARAMETERS; GRADUATION; GENERATION; LOCATIONS; REGION;
D O I
10.1038/s41598-025-86321-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accurate statistical modeling of wind speed variability is crucial for assessing wind energy potential, particularly in regions with low wind speeds and significant calm hours. This study evaluates the Champernowne distribution as a novel model for wind speed analysis, comparing its performance with the two-parameter Weibull, three-parameter Weibull, and Rayleigh-Rice distributions. Wind speed data at 10 m hub height over three years (2021-2023) from Ben Guerir, Morocco, were analyzed using statistical metrics such as Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Bias Error (MBE), Coefficient of Determination (R2), Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC). The Champernowne distribution outperformed the other models across all metrics, achieving the lowest RMSE (0.00036), MAE (0.00022), AIC (650.52), and BIC (689.46), and the highest R2 (0.99998). Its ability to capture calm hours and extreme wind speeds provided more accurate power density estimates, with errors averaging 23%, compared to 33% and 42% for the Weibull and Rayleigh-Rice distributions, respectively. Despite low mean wind speeds (2.7 m/s), Ben Guerir's ground-based power density ranged from 18 to 54 W/m2. The results suggest that conventional large-scale wind energy projects are unsuitable for Ben Guerir. Instead, small Vertical-Axis Wind Turbines (VAWTs) or alternative strategies should be considered. The Champernowne distribution's robustness makes it a valuable tool for wind energy assessments, especially in regions with intermittent wind patterns, providing a foundation for more accurate modeling and energy planning.
引用
收藏
页数:18
相关论文
共 49 条
  • [1] A new method to estimate Weibull parameters for wind energy applications
    Akdag, Seyit A.
    Dinler, Ali
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2009, 50 (07) : 1761 - 1766
  • [2] Determination of the wind energy potential for Maden-Elazig, Turkey
    Akpinar, EK
    Akpinar, S
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2004, 45 (18-19) : 2901 - 2914
  • [3] Evaluation of wind energy potential in Morocco's coastal regions
    Allouhi, A.
    Zamzoum, O.
    Islam, M. R.
    Saidur, R.
    Kousksou, T.
    Jamil, A.
    Derouich, A.
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 72 : 311 - 324
  • [4] Three-parameter vs. two-parameter Weibull distribution for pultruded composite material properties
    Alqam, M
    Bennett, RM
    Zureick, AH
    [J]. COMPOSITE STRUCTURES, 2002, 58 (04) : 497 - 503
  • [5] Theoretical derivation of wind power probability distribution function and applications
    Altunkaynak, Abdusselam
    Erdik, Tarkan
    Dabanli, Ismail
    Sen, Zekai
    [J]. APPLIED ENERGY, 2012, 92 : 809 - 814
  • [6] [Anonymous], 2021, World Energy Balances
  • [7] Wind power characteristics of seven data collection sites in Jubail, Saudi Arabia using Weibull parameters
    Baseer, M. A.
    Meyer, J. P.
    Rehman, S.
    Alam, Md. Mahbub
    [J]. RENEWABLE ENERGY, 2017, 102 : 35 - 49
  • [8] Wind Speed Data Analysis Using Weibull and Rayleigh Distribution Functions, Case Study: Five Cities Northern Morocco
    Bidaoui, Hicham
    El Abbassi, Ikram
    El Bouardi, Abdelmajid
    Darcherif, Abdelmoumen
    [J]. 12TH INTERNATIONAL CONFERENCE INTERDISCIPLINARITY IN ENGINEERING (INTER-ENG 2018), 2019, 32 : 786 - 793
  • [9] Kernel density estimation for heavy-tailed distributions using the Champernowne transformation
    Buch-Larsen, T
    Nielsen, JP
    Guillén, M
    Bolancé, C
    [J]. STATISTICS, 2005, 39 (06) : 503 - 518
  • [10] A MODEL OF INCOME DISTRIBUTION
    Champernowne, D. G.
    [J]. ECONOMIC JOURNAL, 1953, 63 (250) : 318 - 351