The Uniform Convergence of Fourier Series in a System of the Sobolev Orthogonal Polynomials Associated to Ultraspherical Jacobi Polynomials

被引:0
作者
Magomed-Kasumov, M. G. [1 ,2 ]
机构
[1] Daghestan Fed Res Ctr, Makhachkala, Russia
[2] Vladikavkaz Sci Ctr, Vladikavkaz, Russia
基金
俄罗斯科学基金会;
关键词
Sobolev inner product; Jacobi polynomials; Fourier series; uniform convergence; Sobolev space; ultraspherical weight; 517.5; ASYMPTOTICS;
D O I
10.1134/S0037446624060090
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain some necessary and sufficient conditions on a parameter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \alpha $\end{document} that ensure that Fourier series in the Sobolev system of polynomials associated to the ultraspherical Jacobi polynomials converge uniformly on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ [-1,1] $\end{document} to functions in the Sobolev space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ W<^>{r}_{L<^>{1}_{\rho(\alpha)}} $\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \rho(\alpha) $\end{document} is the ultraspherical weight.
引用
收藏
页码:1343 / 1358
页数:16
相关论文
共 25 条
[1]  
Badkov VM., 1968, Sib. Math. J, V9, P947, DOI [10.1007/BF02196447, DOI 10.1007/BF02196447]
[2]  
Bateman H, 1953, HIGHER TRANSCENDENTA
[3]   On the Uniform Stability of Recovering Sine-Type Functions with Asymptotically Separated Zeros [J].
Buterin, S. A. .
MATHEMATICAL NOTES, 2022, 111 (3-4) :343-355
[4]   Fourier series for coherent pairs of Jacobi measures [J].
Ciaurri, Oscar ;
Minguez Ceniceros, Judit .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2021, 32 (5-8) :437-457
[5]   Fourier series of Jacobi-Sobolev polynomials [J].
Ciaurri, Oscar ;
Minguez Ceniceros, Judit .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2019, 30 (04) :334-346
[6]   Fourier Series of Gegenbauer-Sobolev Polynomials [J].
Ciaurri, Oscar ;
Minguez, Judit .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2018, 14
[7]   Discrete-Continuous Jacobi-Sobolev Spaces and Fourier Series [J].
Diaz-Gonzalez, Abel ;
Marcellan, Francisco ;
Pijeira-Cabrera, Hector ;
Urbina, Wilfredo .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (02) :571-598
[8]   Jacobi-Sobolev orthogonal polynomials: Asymptotics and a Cohen type inequality [J].
Fejzullahu, B. Xh. ;
Marcellan, F. ;
Moreno-Balcazar, J. J. .
JOURNAL OF APPROXIMATION THEORY, 2013, 170 :78-93
[9]   Asymptotic properties and Fourier expansions of orthogonal polynomials with a non-discrete Gegenbauer-Sobolev inner product [J].
Fejzullahu, Bujar Xh .
JOURNAL OF APPROXIMATION THEORY, 2010, 162 (02) :397-406
[10]  
Fejzullahu BX., 2009, Commun. Anal. Theory Contin. Fract, V16, P1