Graph-based multi-label feature selection with dynamic graph constraints and latent representation learning

被引:0
作者
Bai, Jianxia [1 ]
Wu, Yanhong [2 ]
机构
[1] Tianjin Renai Coll, Dept Math, Tianjin, Peoples R China
[2] Shandong Huayu Univ Technol, Basic Educ Dept, Dezhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-label learning; Feature selection; Latent representation learning; Dynamic graph; Manifold learning; SUPERVISED LOGISTIC DISCRIMINATION; SPARSITY;
D O I
10.1007/s10489-024-06116-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Currently, multi-label feature selection with joint manifold learning and linear mapping has received much attention. However, the low-quality graph matrix used by existing methods leads to model limitations. Traditional linear mapping cannot learn the coupling relationship between different outputs. In addition, existing approaches ignore latent supervisory information in label correlation. To this end, we obtain a dynamic graph matrix with Laplace rank constraints by the L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{1}$$\end{document} norm with a conventional graph matrix. We also mine more reliable supervised information from label correlations by introducing latent representation learning. Moreover, we integrate all the above terms into a linear mapping learning framework based on improved matrix decomposition, and design a simple and effective scheme based on alternating iterations to optimize this framework. Numerous experimental results validate the competitive advantage of the proposed method over existing state-of-the-art methods.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Robust multi-label feature selection with dual-graph regularization
    Hu, Juncheng
    Li, Yonghao
    Gao, Wanfu
    Zhang, Ping
    KNOWLEDGE-BASED SYSTEMS, 2020, 203 (203)
  • [22] Sparse semi-supervised multi-label feature selection based on latent representation
    Zhao, Xue
    Li, Qiaoyan
    Xing, Zhiwei
    Yang, Xiaofei
    Dai, Xuezhen
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (04) : 5139 - 5151
  • [23] Joint learning of graph and latent representation for unsupervised feature selection
    Xijiong Xie
    Zhiwen Cao
    Feixiang Sun
    Applied Intelligence, 2023, 53 : 25282 - 25295
  • [24] Multi-label feature selection via adaptive dual-graph optimization
    Sun, Zhenzhen
    Xie, Hao
    Liu, Jinghua
    Yu, Yuanlong
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 243
  • [25] Joint learning of graph and latent representation for unsupervised feature selection
    Xie, Xijiong
    Cao, Zhiwen
    Sun, Feixiang
    APPLIED INTELLIGENCE, 2023, 53 (21) : 25282 - 25295
  • [26] Alignment Based Feature Selection for Multi-label Learning
    Chen, Linlin
    Chen, Degang
    NEURAL PROCESSING LETTERS, 2019, 50 (03) : 2323 - 2344
  • [27] Alignment Based Feature Selection for Multi-label Learning
    Linlin Chen
    Degang Chen
    Neural Processing Letters, 2019, 50 : 2323 - 2344
  • [28] Dynamic mutual information-based feature selection for multi-label learning
    Kim, Kyung-Jun
    Jun, Chi-Hyuck
    INTELLIGENT DATA ANALYSIS, 2023, 27 (04) : 891 - 909
  • [29] A Graph-based Semi-supervised Multi-label Learning Method Based on Label Correlation Consistency
    Qin Zhang
    Guoqiang Zhong
    Junyu Dong
    Cognitive Computation, 2021, 13 : 1564 - 1573
  • [30] A Graph-based Semi-supervised Multi-label Learning Method Based on Label Correlation Consistency
    Zhang, Qin
    Zhong, Guoqiang
    Dong, Junyu
    COGNITIVE COMPUTATION, 2021, 13 (06) : 1564 - 1573