共 1 条
Neumann Semigroup, Subgraph Convergence, Form Uniqueness, Stochastic Completeness and the Feller Property
被引:0
|作者:
Keller, Matthias
[1
]
Muench, Florentin
[2
]
Wojciechowski, Radoslaw K.
[3
,4
]
机构:
[1] Univ Potsdam, Dept Math, Potsdam, Germany
[2] Max Planck Inst Math Sci Leipzig, Leipzig, Germany
[3] CUNY York Coll, Jamaica, NY 11451 USA
[4] CUNY Grad Ctr, Jamaica 11451, NY USA
关键词:
Semigroups;
Boundary conditions;
Infinite graphs;
Laplacians;
Stochastic completeness;
Form uniqueness;
Feller property;
VOLUME GROWTH;
DIRICHLET FORMS;
HEAT-EQUATION;
GRAPHS;
LAPLACIANS;
KERNEL;
FLOW;
D O I:
10.1007/s12220-024-01838-9
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We study heat kernel convergence of induced subgraphs with Neumann boundary conditions. We first establish convergence of the resulting semigroups to the Neumann semigroup in & ell;2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell <^>2$$\end{document}. While convergence to the Neumann semigroup always holds, convergence to the Dirichlet semigroup in & ell;2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell <^>2$$\end{document} turns out to be equivalent to the coincidence of the Dirichlet and Neumann semigroups while convergence in & ell;1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell <^>1$$\end{document} is equivalent to stochastic completeness. We then investigate the Feller property for the Neumann semigroup via generalized solutions and give applications to graphs satisfying a condition on the edges as well as birth-death chains.
引用
收藏
页数:23
相关论文