共 66 条
- [51] He S., Jiang X., Jiang W., Ding H., Prototype adaption and projection for few-and zero-shot 3d point cloud semantic segmentation, IEEE Trans. Image Process., 32, pp. 3199-3211, (2023)
- [52] Zhang Y., Qu Y., Xie Y., Li Z., Zheng S., Li C., Perturbed self-distillation: Weakly supervised large-scale point cloud semantic segmentation, pp. 15520-15528, (2021)
- [53] Li M., Xie Y., Shen Y., Ke B., Qiao R., Ren B., Lin S., Ma L., Hybridcr: Weakly-supervised 3d point cloud semantic segmentation via hybrid contrastive regularization, pp. 14930-14939, (2022)
- [54] Yang C.-K., Wu J.-J., Chen K.-S., Chuang Y.-Y., Lin Y.-Y., An mil-derived transformer for weakly supervised point cloud segmentation, pp. 11830-11839, (2022)
- [55] He K., Fan H., Wu Y., Xie S., Girshick R., Momentum Contrast for Unsupervised Visual Representation Learning, pp. 9726-9735, (2020)
- [56] Chang A.X., Funkhouser T., Guibas L., Hanrahan P., Huang Q., Li Z., Savarese S., Savva M., Song S., Su H., ShapeNet: An information-rich 3D model repository, Comput. Sci., (2015)
- [57] Armeni I., Sax S., Zamir A.R., Savarese S., Joint 2d-3d-semantic data for indoor scene understanding, (2017)
- [58] Wang Z., Yu X., Rao Y., Zhou J., Lu J., Take-a-photo: 3d-to-2d generative pre-training of point cloud models, pp. 5640-5650, (2023)
- [59] Laine S., Aila T., Temporal ensembling for semi-supervised learning, (2016)
- [60] Tarvainen A., Valpola H., Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results, Adv. Neural Inf. Process. Syst., 30, (2017)