Using space lidar to infer bubble cloud depth on a global scale

被引:0
作者
Josset, Damien [1 ]
Cayula, Stephanie [1 ]
Anguelova, Magdalena [2 ]
Rogers, W. Erick [1 ]
Wang, David [1 ]
机构
[1] NASA Stennis Space Ctr, Ocean Sci Div, US Naval Res Lab, John C Stennis Space Ctr, MS 39529 USA
[2] US Naval Res Lab, Remote Sensing Div, Washington, DC 20375 USA
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
CALIPSO; OCEAN;
D O I
10.1038/s41598-024-75551-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Visible and microwave satellite measurements can provide the global whitecap fraction. The bubble clouds are three-dimensional structures, and a space-based lidar can provide complementary observations of the bubble depth. Here, we use lidar measurements of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite to quantify global bubble depth from the depolarization. The relationship between CALIPSO bubble depth and wind speed from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) and AMSR2 is similar to a recently derived relationship based on buoy measurements. The CALIPSO-based bubble depth data show global distributions and seasonal variations consistent with the high wind speed (> 7 m/s) but with some variance. We also found similarities between the CALIPSO bubble depth and the whitecap fraction from AMSR2 and WindSat. Our findings support the use of spaceborne lidar measurements for advancing the understanding of the 3D bubble properties, and the ocean physics at high wind speeds.
引用
收藏
页数:9
相关论文
共 39 条
  • [31] Global Cloud Distribution Revealed by Combined Use of CloudSat/CALIPSO: Comparison Using CALIPSO Versions 2 and 3 Data
    Hagihara, Yuichiro
    Okamoto, Hajime
    RADIATION PROCESSES IN THE ATMOSPHERE AND OCEAN (IRS2012), 2013, 1531 : 456 - 459
  • [32] Mapping aerosol intrusion in Himalayan valleys using the Moderate Resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)
    Brun, Julien
    Shrestha, Prabhakar
    Barros, Ana P.
    ATMOSPHERIC ENVIRONMENT, 2011, 45 (35) : 6382 - 6392
  • [33] Predicting coral bleaching in response to environmental stressors using 8 years of global-scale data
    Yee, Susan Harrell
    Barron, Mace G.
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2010, 161 (1-4) : 423 - 438
  • [34] Comparative assessment of a near-global view of individual cloud types from space-borne active and passive sensors and ground-based observations
    Sarkar, Thumree
    Dey, Sagnik
    Ganguly, Dilip
    Di Girolamo, Larry
    Hong, Yulan
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2022, 42 (15) : 8073 - 8088
  • [35] Sensitivity of Cloud Liquid Water Content Estimates to the Temperature-Dependent Thermodynamic Phase: A Global Study Using CloudSat Data
    Devasthale, Abhay
    Thomas, Manu Anna
    JOURNAL OF CLIMATE, 2012, 25 (20) : 7297 - 7307
  • [36] Investigation on the monthly variation of cirrus optical properties over the Indian sub-continent using cloud-aerosol lidar and infrared pathfinder satellite observation (Calipso)
    Dhaman, Reji K.
    Satyanarayana, Malladi
    Jayeshlal, G. S.
    Pillai, V. P. Mahadevan
    Krishnakumar, V.
    REMOTE SENSING OF THE ATMOSPHERE, CLOUDS, AND PRECIPITATION VI, 2016, 9876
  • [37] Vertical and spatial distribution of elevated aerosol layers obtained using long-term ground-based and space-borne lidar observations
    Gupta, Gopika
    Ratnam, M. Venkat
    Madhavan, B. L.
    Prasad, P.
    Narayanamurthy, C. S.
    ATMOSPHERIC ENVIRONMENT, 2021, 246
  • [38] Role of PBL and air-sea flux parameterization schemes in the forecast of super cyclone Amphan and ESCS Phailin in the cloud-resolving scale using WRF-ARW model
    Reshma, M. S.
    Singh, Kuvar Satya
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2024, 10 (04) : 5449 - 5467
  • [39] Deriving a Global and Hourly Data Set of Aerosol Optical Depth Over Land Using Data From Four Geostationary Satellites: GOES-16, MSG-1, MSG-4, and Himawari-8
    Xie, Yanqing
    Xue, Yong
    Guang, Jie
    Mei, Linlu
    She, Lu
    Li, Ying
    Che, Yahui
    Fan, Cheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (03): : 1538 - 1549