Using space lidar to infer bubble cloud depth on a global scale

被引:0
作者
Josset, Damien [1 ]
Cayula, Stephanie [1 ]
Anguelova, Magdalena [2 ]
Rogers, W. Erick [1 ]
Wang, David [1 ]
机构
[1] NASA Stennis Space Ctr, Ocean Sci Div, US Naval Res Lab, John C Stennis Space Ctr, MS 39529 USA
[2] US Naval Res Lab, Remote Sensing Div, Washington, DC 20375 USA
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
CALIPSO; OCEAN;
D O I
10.1038/s41598-024-75551-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Visible and microwave satellite measurements can provide the global whitecap fraction. The bubble clouds are three-dimensional structures, and a space-based lidar can provide complementary observations of the bubble depth. Here, we use lidar measurements of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite to quantify global bubble depth from the depolarization. The relationship between CALIPSO bubble depth and wind speed from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) and AMSR2 is similar to a recently derived relationship based on buoy measurements. The CALIPSO-based bubble depth data show global distributions and seasonal variations consistent with the high wind speed (> 7 m/s) but with some variance. We also found similarities between the CALIPSO bubble depth and the whitecap fraction from AMSR2 and WindSat. Our findings support the use of spaceborne lidar measurements for advancing the understanding of the 3D bubble properties, and the ocean physics at high wind speeds.
引用
收藏
页数:9
相关论文
共 39 条
  • [1] Bubble cloud depth under a hurricane
    Wang, D. W.
    Wijesekera, H. W.
    Teague, W. J.
    Rogers, W. E.
    Jarosz, E.
    GEOPHYSICAL RESEARCH LETTERS, 2011, 38
  • [2] Aerosol and Cloud Detection Using Machine Learning Algorithms and Space-Based Lidar Data
    Yorks, John E.
    Selmer, Patrick A.
    Kupchock, Andrew
    Nowottnick, Edward P.
    Christian, Kenneth E.
    Rusinek, Daniel
    Dacic, Natasha
    McGill, Matthew J.
    ATMOSPHERE, 2021, 12 (05)
  • [3] Multistatic aerosol-cloud lidar in space: A theoretical perspective
    Mishchenko, Michael I.
    Alexandrov, Mikhail D.
    Cairns, Brian
    Travis, Larry D.
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2016, 184 : 180 - 192
  • [4] Using GEBCO digital bathymetry to infer depth biases in the XBT data
    Gouretski, Viktor
    DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS, 2012, 62 : 40 - 52
  • [5] Spaceborne lidar measurement of global cloud properties through machine learning
    Hu, Karen
    Lu, Xiaomei
    FRONTIERS IN REMOTE SENSING, 2024, 5
  • [6] Development of a compact space-borne Lidar for atmospheric aerosol and cloud detection
    Chen, Jianfeng
    Xie, Chenbo
    Ji, Jie
    ATMOSPHERIC ENVIRONMENT, 2023, 309
  • [7] Space-based lidar measurements of global ocean carbon stocks
    Behrenfeld, Michael J.
    Hu, Yongxiang
    Hostetler, Chris A.
    Dall'Olmo, Giorgio
    Rodier, Sharon D.
    Hair, John W.
    Trepte, Charles R.
    GEOPHYSICAL RESEARCH LETTERS, 2013, 40 (16) : 4355 - 4360
  • [8] Cloud vertical distribution from combined surface and space radar-lidar observations at two Arctic atmospheric observatories
    Liu, Yinghui
    Shupe, Matthew D.
    Wang, Zhien
    Mace, Gerald
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2017, 17 (09) : 5973 - 5989
  • [9] Cloud ice water content retrieved from the CALIOP space-based lidar
    Avery, Melody
    Winker, David
    Heymsfield, Andrew
    Vaughan, Mark
    Young, Stuart
    Hu, Yongxiang
    Trepte, Charles
    GEOPHYSICAL RESEARCH LETTERS, 2012, 39
  • [10] Errors in global cloud climatology due to transect sampling with the CALIPSO satellite lidar mission
    Kotarba, Andrzej Z.
    ATMOSPHERIC RESEARCH, 2022, 279