Frost forecasting through machine learning algorithms

被引:0
作者
Tarraga, Javier Perez [1 ]
Castillo-Cara, Manuel [2 ]
Arias-Antunez, Enrique [3 ]
Dujovne, Diego [4 ]
机构
[1] Univ Castilla La Mancha, Inst Invest Informat Albacete, ReTiCS Res Grp, Calle Invest 2, Albacete 02071, Spain
[2] Univ Nacl Educ Distancia, Calle Juan Rosal 16, Madrid 28040, Spain
[3] Univ Castilla La Mancha, Dept Sistemas Informat, Paseo Estudiantes,s-n, Albacete 02071, Spain
[4] Univ Diego Portales, Fac Ingn & Ciencias, Manuel Rodriguez Sur 415, Santiago, Chile
关键词
Frost forecast; Machine learning methods; Synthetic minority oversampling technique; Frost methodology; Frost dataset; PREDICTION;
D O I
10.1007/s12145-025-01710-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Agriculture continues to be one of the world's main sources of income and provides great environmental, territorial and social value. However, frost is a recurring problem for farmers each year, representing a significant threat to agricultural production. In a matter of hours, temperatures below the freezing point can result in the loss of nearly the entire crop from a producer. In this article, we have analyzed and compared the application of a set of machine learning algorithms to predict the occurrence of frost events in the next 24 hours. The prediction process covers several challenges, such as data capture, processing, extracting each relevant parameter and finally building different prediction models to compared their performance. Furthermore, we have employed the Synthetic Minority Oversampling Technique (SMOTE) methodology to address the issue of imbalanced datasets, given the natural scarcity of frost events during the data sampling period. Our results show that among the machine learning algorithms we compared, the most efficient in terms of Recall score is K-Nearest Neighbor (KNN), while using the Area Under Curve (AUC) criteria, the highest score belongs to the Extra Trees algorithm, with 0.9909. Moreover, by applying the SMOTE balancing process, the AUC score of our models increased 13%, while the Recall score increased from 55% to 82%.
引用
收藏
页数:16
相关论文
共 34 条
[1]   Systematic Review of Using Machine Learning in Imputing Missing Values [J].
Alabadla, Mustafa ;
Sidi, Fatimah ;
Ishak, Iskandar ;
Ibrahim, Hamidah ;
Affendey, Lilly Suriani ;
Ani, Zafienas Che ;
Jabar, Marzanah A. ;
Bukar, Umar Ali ;
Devaraj, Navin Kumar ;
Muda, Ahmad Sobri ;
Tharek, Anas ;
Omar, Noritah ;
Jaya, M. Izham Mohd .
IEEE ACCESS, 2022, 10 :44483-44502
[2]  
[Anonymous], 2025, Welcome to the QGIS project!-qgis.org
[3]  
[Anonymous], 2025, Scikit-learn: machine learning in Python-scikit-learn 1.6.0 documentation
[4]  
Bagdonas A, 1978, Techniques of frost prediction and methods of frost and cold protection, P157
[5]   Making decisions for frost prediction in agricultural crops in a soft computing framework [J].
Cadenas, J. M. ;
Garrido, M. C. ;
Martinez-Espana, R. ;
Guillen-Navarro, M. A. .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2020, 175
[6]  
Cellier P, 1982, Contribution a la prevision des temperatures minimales nocturnes en conditions de gelees de printemps. etude de l'evolution des temperatures de l'air et du sol au cours de la nuit
[7]   Frost Conditions Due to Climate Change in South-Eastern Europe via a High-Spatiotemporal-Resolution Dataset [J].
Charalampopoulos, Ioannis ;
Droulia, Fotoula .
ATMOSPHERE, 2022, 13 (09)
[8]   SMOTE: Synthetic minority over-sampling technique [J].
Chawla, Nitesh V. ;
Bowyer, Kevin W. ;
Hall, Lawrence O. ;
Kegelmeyer, W. Philip .
2002, American Association for Artificial Intelligence (16)
[9]   Inter-annual variability and trends of the frost-free season characteristics over Central and Southeast Europe in 1950-2019 [J].
Chervenkov, Hristo ;
Slavov, Kiril .
JOURNAL OF CENTRAL EUROPEAN AGRICULTURE, 2022, 23 (01) :154-164
[10]  
D ES, 2022, MISCEL LANI, V68