GF-1 WFV satellite images based forest cover mapping in China supported by open land use/cover datasets

被引:0
作者
Peng, Xueli [1 ,2 ]
He, Guojin [1 ,2 ,3 ,4 ]
Wang, Guizhou [1 ,2 ]
Yin, Ranyu [1 ]
Yang, Ruiqing [1 ,2 ]
Peng, Yan [1 ]
Long, Tengfei [1 ,2 ]
Zhang, Zhaoming [1 ,2 ]
Chen, Yanlin [1 ,2 ]
Wang, Jianping [1 ,3 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Kashi Aerosp Informat Res Inst, Kashgar 844000, Peoples R China
[4] Chinese Acad Sci, Hainan Res Inst, Aerosp Informat Res Inst, Key Lab Earth Observat Hainan Prov, Sanya 572029, Peoples R China
基金
中国国家自然科学基金;
关键词
TIME-SERIES; CLASSIFICATION; DYNAMICS;
D O I
10.1038/s41597-024-04202-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The United Nations sustainable development agenda emphasizes the importance of forests. China's forests cover 5% of the world's forest area, significantly influencing global climate and ecology. In recent decades, China's forests have undergone notable changes. Accurate forest cover maps are crucial for understanding forest distribution, conducting ecological research and sustainable management. However, there is a lack of forest cover maps satisfying the criteria. To this issue, this study focuses on developing a precise 16-m resolution forest cover map of China. For this purpose, we propose a forest classification framework based on weakly supervised deep learning and prior knowledge from open datasets. Utilizing this framework and GF-1 WFV satellite images, we generated China's forest cover map in 2020 named FCM16. The FCM16 is evaluated using 136,385 sample points, achieving an overall accuracy of 94.64 +/- 0.12%, producer's accuracy of 91.12 +/- 0.27% and user's accuracy of 87.31 +/- 0.34%. Additionally, FCM16 was compared with existing forest-related datasets, demonstrating its reliability. In general, FCM16 effectively represents China's forest cover in 2020, providing a valuable resource for social and ecological analysis.
引用
收藏
页数:13
相关论文
共 45 条
[1]   Random forest in remote sensing: A review of applications and future directions [J].
Belgiu, Mariana ;
Dragut, Lucian .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2016, 114 :24-31
[2]   A coarse-to-fine weakly supervised learning method for green plastic cover segmentation using high-resolution remote sensing images [J].
Cao, Yinxia ;
Huang, Xin .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2022, 188 :157-176
[3]   Global land cover mapping at 30 m resolution: A POK-based operational approach [J].
Chen, Jun ;
Chen, Jin ;
Liao, Anping ;
Cao, Xin ;
Chen, Lijun ;
Chen, Xuehong ;
He, Chaoying ;
Han, Gang ;
Peng, Shu ;
Lu, Miao ;
Zhang, Weiwei ;
Tong, Xiaohua ;
Mills, Jon .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2015, 103 :7-27
[4]   Mapping China?s planted forests using high resolution imagery and massive amounts of crowdsourced samples [J].
Cheng, Kai ;
Su, Yanjun ;
Guan, Hongcan ;
Tao, Shengli ;
Ren, Yu ;
Hu, Tianyu ;
Ma, Keping ;
Tang, Yanhong ;
Guo, Qinghua .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 196 :356-371
[5]   Training data requirements for fire severity mapping using Landsat imagery and random forest [J].
Collins, Luke ;
McCarthy, Greg ;
Mellor, Andrew ;
Newell, Graeme ;
Smith, Luke .
REMOTE SENSING OF ENVIRONMENT, 2020, 245
[6]   Optical remotely sensed time series data for land cover classification: A review [J].
Gomez, Cristina ;
White, Joanne C. ;
Wulder, Michael A. .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2016, 116 :55-72
[7]   Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017 [J].
Gong, Peng ;
Liu, Han ;
Zhang, Meinan ;
Li, Congcong ;
Wang, Jie ;
Huang, Huabing ;
Clinton, Nicholas ;
Ji, Luyan ;
Li, Wenyu ;
Bai, Yuqi ;
Chen, Bin ;
Xu, Bing ;
Zhu, Zhiliang ;
Yuan, Cui ;
Suen, Hoi Ping ;
Guo, Jing ;
Xu, Nan ;
Li, Weijia ;
Zhao, Yuanyuan ;
Yang, Jun ;
Yu, Chaoqing ;
Wang, Xi ;
Fu, Haohuan ;
Yu, Le ;
Dronova, Iryna ;
Hui, Fengming ;
Cheng, Xiao ;
Shi, Xueli ;
Xiao, Fengjin ;
Liu, Qiufeng ;
Song, Lianchun .
SCIENCE BULLETIN, 2019, 64 (06) :370-373
[8]   Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data [J].
Gong, Peng ;
Wang, Jie ;
Yu, Le ;
Zhao, Yongchao ;
Zhao, Yuanyuan ;
Liang, Lu ;
Niu, Zhenguo ;
Huang, Xiaomeng ;
Fu, Haohuan ;
Liu, Shuang ;
Li, Congcong ;
Li, Xueyan ;
Fu, Wei ;
Liu, Caixia ;
Xu, Yue ;
Wang, Xiaoyi ;
Cheng, Qu ;
Hu, Luanyun ;
Yao, Wenbo ;
Zhang, Han ;
Zhu, Peng ;
Zhao, Ziying ;
Zhang, Haiying ;
Zheng, Yaomin ;
Ji, Luyan ;
Zhang, Yawen ;
Chen, Han ;
Yan, An ;
Guo, Jianhong ;
Yu, Liang ;
Wang, Lei ;
Liu, Xiaojun ;
Shi, Tingting ;
Zhu, Menghua ;
Chen, Yanlei ;
Yang, Guangwen ;
Tang, Ping ;
Xu, Bing ;
Giri, Chandra ;
Clinton, Nicholas ;
Zhu, Zhiliang ;
Chen, Jin ;
Chen, Jun .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2013, 34 (07) :2607-2654
[9]   Monitoring conterminous United States (CONUS) land cover change with Web-Enabled Landsat Data (WELD) [J].
Hansen, M. C. ;
Egorov, A. ;
Potapov, P. V. ;
Stehman, S. V. ;
Tyukavina, A. ;
Turubanova, S. A. ;
Roy, D. P. ;
Goetz, S. J. ;
Loveland, T. R. ;
Ju, J. ;
Kommareddy, A. ;
Kovalskyy, V. ;
Forsyth, C. ;
Bents, T. .
REMOTE SENSING OF ENVIRONMENT, 2014, 140 :466-484
[10]   Towards an operational MODIS continuous field of percent tree cover algorithm: examples using AVHRR and MODIS data [J].
Hansen, MC ;
DeFries, RS ;
Townshend, JRG ;
Sohlberg, R ;
Dimiceli, C ;
Carroll, M .
REMOTE SENSING OF ENVIRONMENT, 2002, 83 (1-2) :303-319