A (t, n) threshold quantum secret sharing with authentication based on single photons

被引:2
作者
Zhang, Jie [1 ]
Qin, Sujuan [2 ]
Jin, Zhengping [2 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Cyberspace Secur, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantum secret sharing; Lagrange interpolation polynomial; (t; n); threshold; Authentication; Single photons; KEY DISTRIBUTION;
D O I
10.1007/s11128-025-04672-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Secret sharing has become a important cryptographic primitive and been widely used. And quantum secret sharing is a quantum approach to achieve secret sharing. The (t, n) threshold quantum secret sharing requires only t participants out of n to cooperate to recover the secret, which is more flexible than the (n, n) scheme. However, most (t, n) threshold schemes basically involve quantum entanglement, and the preparation of entangled states as well as entanglement swapping are relatively complex. In this paper, we propose a (t, n) threshold quantum secret sharing scheme with authentication by using the Lagrange interpolation polynomial based on single photons. Unlike other (t, n) threshold schemes, it does not involve entangled states or entanglement swapping. And the distributor authenticate the participants without revealing the full identity key. In addition, secret sharing is based on Lagrange interpolation polynomial implementation, allowing any t participants to recover the secret. Analysis shows that the scheme can resist external eavesdroppers and dishonest participants. Compared with other schemes, this scheme has the following advantages: (1) it is easy to implement; (2) the (t, n) threshold scheme increases the flexibility of the scheme; (3) the identity key can be reused.
引用
收藏
页数:13
相关论文
共 65 条
[1]   Quantum secret sharing with identity authentication based on Bell states [J].
Abulkasim, Hussein ;
Hamad, Safwat ;
Khalifa, Amal ;
El Bahnasy, Khalid .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2017, 15 (04)
[2]   Quantum secret sharing based on reusable Greenberger-Horne-Zeilinger states as secure carriers [J].
Bagherinezhad, S ;
Karimipour, V .
PHYSICAL REVIEW A, 2003, 67 (04) :4
[3]   Verifiable quantum secret sharing scheme using Bell states for a class of special access structures [J].
Bai, Chen-Ming ;
Zhang, Sujuan ;
Liu, Lu .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2025, 23 (01)
[4]   Verifiable quantum secret sharing scheme based on orthogonal product states [J].
Bai, Chen-Ming ;
Liu, Lu ;
Zhang, Sujuan .
CHINESE PHYSICS B, 2024, 33 (07)
[5]   Verifiable Quantum Secret Sharing Scheme Based on LDPC Codes [J].
Bai, Chen-Ming ;
Feng, Yanan ;
Zhang, Sujuan ;
Liu, Lu .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2024, 63 (01)
[6]   Experimental demonstration of graph-state quantum secret sharing [J].
Bell, B. A. ;
Markham, D. ;
Herrera-Marti, D. A. ;
Marin, A. ;
Wadsworth, W. J. ;
Rarity, J. G. ;
Tame, M. S. .
NATURE COMMUNICATIONS, 2014, 5
[7]   Quantum cryptography: Public key distribution and coin tossing [J].
Bennett, Charles H. ;
Brassard, Gilles .
THEORETICAL COMPUTER SCIENCE, 2014, 560 :7-11
[8]  
Blakley G.R., 1899, P NAT COMP C, P313, DOI DOI 10.1109/MARK.1979.8817296
[9]   Multimode entanglement in reconfigurable graph states using optical frequency combs [J].
Cai, Y. ;
Roslund, J. ;
Ferrini, G. ;
Arzani, F. ;
Xu, X. ;
Fabre, C. ;
Treps, N. .
NATURE COMMUNICATIONS, 2017, 8
[10]   Twin-field quantum key distribution over a 511km optical fibre linking two distant metropolitan areas [J].
Chen, Jiu-Peng ;
Zhang, Chi ;
Liu, Yang ;
Jiang, Cong ;
Zhang, Wei-Jun ;
Han, Zhi-Yong ;
Ma, Shi-Zhao ;
Hu, Xiao-Long ;
Li, Yu-Huai ;
Liu, Hui ;
Zhou, Fei ;
Jiang, Hai-Feng ;
Chen, Teng-Yun ;
Li, Hao ;
You, Li-Xing ;
Wang, Zhen ;
Wang, Xiang-Bin ;
Zhang, Qiang ;
Pan, Jian-Wei .
NATURE PHOTONICS, 2021, 15 (08) :570-575