Machine learning assisted rapid approach for quantitative prediction of biochemical parameters of blood serum with FTIR spectroscopy

被引:1
作者
Chechekina, O. G. [1 ,2 ]
Tropina, E. V. [1 ,2 ]
Fatkhutdinova, L. I. [3 ]
Zyuzin, M. V. [3 ]
Bogdanov, A. A. [3 ,4 ]
Ju, Y. [5 ]
Boldyrev, K. N. [1 ,2 ,5 ]
机构
[1] Russian Acad Sci, Inst Spect, Troitsk 108840, Russia
[2] Natl Res Univ Higher Sch Econ, Moscow 101000, Russia
[3] ITMO Univ, Sch Phys & Engn, St Petersburg 197101, Russia
[4] Harbin Engn Univ, Qingdao Innovat & Dev Ctr, Qingdao 266000, Peoples R China
[5] Beijing Inst Technol, Adv Res Inst Multidisciplinary, Beijing 100081, Peoples R China
基金
俄罗斯科学基金会;
关键词
FTIR spectroscopy; Machine learning; Blood biochemical parameters; Attenuated total reflection; TRANSFORM INFRARED-SPECTROSCOPY; WHOLE-BLOOD; PLASMA; GLUCOSE; MICROSPECTROSCOPY; IDENTIFICATION; TRANSMISSION; CHOLESTEROL; DIAGNOSIS; CANCER;
D O I
10.1016/j.saa.2024.125283
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
This study develops regression models for predicting blood biochemical data using Fourier-transform infrared spectroscopy (FTIR) analysis. Absorption at specific wavelengths of blood serum is revealed to have strong correlations with biochemical parameters, such as ALT, amylase, AST, protein, bilirubin, Gamma-GT, iron, calcium, uric acid, triglycerides, phosphatase and cholesterol, were shown. The results consistently demonstrate that Random Forest Regression outperforms other models, delivering impressive outcomes for the majority of analyzed parameters. For some parameters we obtained a coefficient of determination of 0.95 and more (amylase, AST, iron, calcium, protein, uric acid and cholesterol), which makes this approach to be applicable clinical diagnostics. These findings highlight the potential of FTIR analysis combined with regression models precise assessment of blood biochemistry.
引用
收藏
页数:7
相关论文
共 46 条
  • [1] High sensitivity enzyme-linked immunosorbent assay (ELISA) method for measuring protein carbonyl in samples with low amounts of protein
    Alamdari, DH
    Kostidou, E
    Paletas, K
    Sarigianni, M
    Konstas, AGP
    Karapiperidou, A
    Koliakos, G
    [J]. FREE RADICAL BIOLOGY AND MEDICINE, 2005, 39 (10) : 1362 - 1367
  • [2] Training and evaluating machine learning algorithms for ocean microplastics classification through vibrational spectroscopy
    Back, Henrique de Medeiros
    Junior, Edson Cilos Vargas
    Alarcon, Orestes Estevam
    Pottmaier, Daphiny
    [J]. CHEMOSPHERE, 2022, 287
  • [3] Purification of IFT Particle Proteins and Preparation of Recombinant Proteins for Structural and Functional Analysis
    Behal, Robert H.
    Betleja, Ewelina
    Cole, Douglas G.
    [J]. CILIA: MODEL ORGANISMS AND INTRAFLAGELLAR TRANSPORT, 2009, 93 : 179 - 196
  • [4] Application of FTIR Spectroscopy for Quantitative Analysis of Blood Serum: A Preliminary Study
    Bel'skaya, Lyudmila V.
    Sarf, Elena A.
    Solomatin, Denis V.
    [J]. DIAGNOSTICS, 2021, 11 (12)
  • [5] Bjerrum E.J., 2017, Data Augmentation of Spectral Data for Convolutional Neural Network (CNN) Based Deep Chemometrics, P1, DOI DOI 10.48550/ARXIV.1710.01927
  • [6] A BIOCHEMICAL PERSPECTIVE OF THE POLYMERASE CHAIN-REACTION
    BLOCH, W
    [J]. BIOCHEMISTRY, 1991, 30 (11) : 2735 - 2747
  • [7] Stratifying Brain Tumour Histological Sub-Types: The Application of ATR-FTIR Serum Spectroscopy in Secondary Care
    Cameron, James M.
    Rinaldi, Christopher
    Butler, Holly J.
    Hegarty, Mark G.
    Brennan, Paul M.
    Jenkinson, Michael D.
    Syed, Khaja
    Ashton, Katherine M.
    Dawson, Timothy P.
    Palmer, David S.
    Baker, Matthew J.
    [J]. CANCERS, 2020, 12 (07) : 1 - 16
  • [8] A Preliminary Study of FTIR Spectroscopy as a Potential Non-Invasive Screening Tool for Pediatric Precursor B Lymphoblastic Leukemia
    Chaber, Radoslaw
    Kowal, Aneta
    Jakubczyk, Pawel
    Arthur, Christopher
    Lach, Kornelia
    Wojnarowska-Nowak, Renata
    Kusz, Krzysztof
    Zawlik, Izabela
    Paszek, Sylwia
    Cebulski, Jozef
    [J]. MOLECULES, 2021, 26 (04):
  • [9] Prediction of Ewing Sarcoma treatment outcome using attenuated tissue reflection FTIR tissue spectroscopy
    Chaber, Radoslaw
    Lach, Kornelia
    Arthur, Christopher J.
    Raciborska, Anna
    Michalak, Elibieta
    Ciebiera, Krzysztof
    Bilska, Katarzyna
    Drabko, Katarzyna
    Cebulski, Jozef
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [10] Fourier Transform Infrared (FTIR) Spectroscopy to Analyse Human Blood over the Last 20 Years: A Review towards Lab-on-a-Chip Devices
    Fadlelmoula, Ahmed
    Pinho, Diana
    Carvalho, Vitor Hugo
    Catarino, Susana O.
    Minas, Graca
    [J]. MICROMACHINES, 2022, 13 (02)