By using the Ljusternik-Schnirelmann category and variational method, we study the existence, multiplicity and concentration of solutions to the fractional Schrödinger equation with potentials competition as follows εN(−Δ)N/ssu+V(x)∣u∣Ns−2u=Q(x)h(u)inRN,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varepsilon^{N}(-\Delta)_{N/s}^{s}u+V(x)|u|^{{{N}\over{s}}-2}u=Q(x)h(u)\,\,\text{in}\,\, \mathbb{R}^{N},$$\end{document} where ε > 0 is a parameter, s ∈ (0, 1), 2 ≤ p < +∞ and N = ps. The nonlinear term h is a differentiable function with exponential critical growth, the absorption potential V and the reaction potential Q are continuous functions.