Multiplicity and concentration of solutions to a fractional NS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\over{S}$$\end{document}-Laplacian problem with exponential critical growth and potentials competition

被引:0
作者
Wei Chen [1 ]
Chao Ji [2 ]
Nguyen Van Thin [3 ]
机构
[1] Chongqing University of Posts and Telecommunications,School of Science
[2] East China University of Science and Technology,School of Mathematics
[3] Thai Nguyen University of Education,Department of Mathematics
[4] Thang Long University,Thang Long Institute of Mathematics and Applied Sciences
关键词
exponential critical growth; fractional ; -Laplace; Ljusternik-Schnirelmann theory; mountain pass theorem; Trudinger-Moser inequality; variational methods; 35A15; 35A23; 35J35; 35J60; 35R11;
D O I
10.1007/s10473-025-0309-1
中图分类号
学科分类号
摘要
By using the Ljusternik-Schnirelmann category and variational method, we study the existence, multiplicity and concentration of solutions to the fractional Schrödinger equation with potentials competition as follows εN(−Δ)N/ssu+V(x)∣u∣Ns−2u=Q(x)h(u)inRN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon^{N}(-\Delta)_{N/s}^{s}u+V(x)|u|^{{{N}\over{s}}-2}u=Q(x)h(u)\,\,\text{in}\,\, \mathbb{R}^{N},$$\end{document} where ε > 0 is a parameter, s ∈ (0, 1), 2 ≤ p < +∞ and N = ps. The nonlinear term h is a differentiable function with exponential critical growth, the absorption potential V and the reaction potential Q are continuous functions.
引用
收藏
页码:885 / 918
页数:33
相关论文
empty
未找到相关数据