Some generalizations of dynamic Opial-type inequalities in conformable calculus

被引:0
作者
Khamis, Fatma M. [1 ]
El-Sheikh, M. M. A. [2 ]
Abdeljawad, Thabet [3 ,4 ,5 ,6 ]
Mukheimer, Aiman [3 ]
Ismail, Gamal A. F. [1 ]
机构
[1] Ain Shams Univ, Fac Women Art Sci & Educ, Dept Math, Cairo, Egypt
[2] Menoufia Univ, Fac Sci, Dept Math & Comp Sci, Shibin Al Kawm, Egypt
[3] Prince Sultan Univ, Dept Math & Sci, Riyadh 11586, Saudi Arabia
[4] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[5] Gulf Univ Sci & Technol, Ctr Appl Math & Bioinformat CAMB, Hawally 32093, Kuwait
[6] Sefako Makgatho Hlth Sci Univ, Dept Math & Applield Math, ZA-0204 Garankuwa, South Africa
关键词
Opial-type inequality; Dynamic inequality; H & ouml; lder inequality; Conformable fractional calculus; FRACTIONAL CALCULUS;
D O I
10.1186/s13660-024-03224-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider generalized conformable integrals to establish new Opial-type inequalities. The obtained results mainly depend on H & ouml;lder's inequality, some algebraic inequalities, and a simple consequence of Keller's chain rule on time scales. Our obtained results unify and extend some continuous and discrete inequalities. In the special case alpha=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha = 1$\end{document}, our results cover some well-known inequalities of Opial-type on time scales.
引用
收藏
页数:15
相关论文
共 50 条
[41]   Some Steffensen-type dynamic inequalities on time scales [J].
A. A. El-Deeb ;
H. A. El-Sennary ;
Zareen A. Khan .
Advances in Difference Equations, 2019
[42]   A study on conformable fractional version of Bullen-type inequalities [J].
Hezenci, Fatih ;
Budak, Huseyin ;
Kara, Hasan .
TURKISH JOURNAL OF MATHEMATICS, 2023, 47 (04) :1306-1317
[43]   Dynamic Inequalities of Two-Dimensional Hardy Type via Alpha-Conformable Derivatives on Time Scales [J].
El-Deeb, Ahmed A. A. ;
El-Bary, Alaa A. A. ;
Awrejcewicz, Jan ;
Nonlaopon, Kamsing .
SYMMETRY-BASEL, 2022, 14 (12)
[44]   Some fractional dynamic inequalities on time scales of Hardy's type [J].
Sayed, A. G. ;
Saker, S. H. ;
Ahmed, A. M. .
JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2021, 23 (02) :98-109
[45]   On some dynamic inequalities of Hilbert's-type on time scales [J].
El-Deeb, Ahmed A. ;
Baleanu, Dumitrru ;
Shah, Nehad Ali ;
Abdeldaim, Ahmed .
AIMS MATHEMATICS, 2023, 8 (02) :3378-3402
[46]   On Some Important Dynamic Inequalities of Hardy-Hilbert-Type on Timescales [J].
El-Deeb, Ahmed A. ;
Baleanu, Dumitru ;
Cesarano, Clemente ;
Abdeldaim, Ahmed .
SYMMETRY-BASEL, 2022, 14 (07)
[47]   Novel results on trapezoid-type inequalities for conformable fractional integrals [J].
Hezenci, Fatih ;
Budak, Huseyin .
TURKISH JOURNAL OF MATHEMATICS, 2023, 47 (02) :425-438
[48]   Some Generalizations of ( backward difference backward difference )Δ-Gronwall-Bellman-Pachpatte Dynamic Inequalities on Time Scales with Application [J].
El-Deeb, Ahmed A. ;
El-Bary, Alaa A. ;
Awrejcewicz, Jan .
SYMMETRY-BASEL, 2022, 14 (09)
[49]   Steffensen-Type Inequalities with Weighted Function via (γ, a)-Nabla-Conformable Integral on Time Scales [J].
El-Deeb, Ahmed A. ;
Awrejcewicz, Jan .
MATHEMATICS, 2021, 9 (23)
[50]   Opial type inequalities involving Riemann-Liouville fractional derivatives of two functions with applications [J].
Anastassiou, George A. .
MATHEMATICAL AND COMPUTER MODELLING, 2008, 48 (3-4) :344-374