Some generalizations of dynamic Opial-type inequalities in conformable calculus

被引:0
作者
Khamis, Fatma M. [1 ]
El-Sheikh, M. M. A. [2 ]
Abdeljawad, Thabet [3 ,4 ,5 ,6 ]
Mukheimer, Aiman [3 ]
Ismail, Gamal A. F. [1 ]
机构
[1] Ain Shams Univ, Fac Women Art Sci & Educ, Dept Math, Cairo, Egypt
[2] Menoufia Univ, Fac Sci, Dept Math & Comp Sci, Shibin Al Kawm, Egypt
[3] Prince Sultan Univ, Dept Math & Sci, Riyadh 11586, Saudi Arabia
[4] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[5] Gulf Univ Sci & Technol, Ctr Appl Math & Bioinformat CAMB, Hawally 32093, Kuwait
[6] Sefako Makgatho Hlth Sci Univ, Dept Math & Applield Math, ZA-0204 Garankuwa, South Africa
关键词
Opial-type inequality; Dynamic inequality; H & ouml; lder inequality; Conformable fractional calculus; FRACTIONAL CALCULUS;
D O I
10.1186/s13660-024-03224-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider generalized conformable integrals to establish new Opial-type inequalities. The obtained results mainly depend on H & ouml;lder's inequality, some algebraic inequalities, and a simple consequence of Keller's chain rule on time scales. Our obtained results unify and extend some continuous and discrete inequalities. In the special case alpha=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha = 1$\end{document}, our results cover some well-known inequalities of Opial-type on time scales.
引用
收藏
页数:15
相关论文
共 50 条
[31]   Fractional Reverse Coposn's Inequalities via Conformable Calculus on Time Scales [J].
Zakarya, Mohammed ;
Altanji, Mohamed ;
AlNemer, Ghada ;
Abd El-Hamid, Hoda A. ;
Cesarano, Clemente ;
Rezk, Haytham M. .
SYMMETRY-BASEL, 2021, 13 (04)
[32]   Dynamic Opial diamond-α integral inequalities involving the power of a function [J].
Mirkovic, Tatjana Z. .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
[33]   On Some Pachpatte-Type Dynamic Inequalities and Their Applications [J].
Osman, Mahmoud M. ;
Saker, Samir H. ;
Anderson, Douglas R. .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2025, 24 (03)
[34]   On some dynamic inequalities of Steffensen type on time scales [J].
Abdeldaim, A. ;
El-Deeb, A. A. ;
Agarwal, Praveen ;
El-Sennary, H. A. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (12) :4737-4753
[35]   Opial type inequalities involving fractional derivatives of two functions and applications [J].
Anastassiou, GA .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 48 (10-11) :1701-1731
[36]   On some investigations of alpha-conformable Ostrowski-Trapezoid-Gruss dynamic inequalities on time scales [J].
El-Deeb, Ahmed A. .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2023, 2023 (01)
[37]   Some remarks on parameterized inequalities involving conformable fractional operators [J].
Unal, Cihan ;
Hezenci, Fatih ;
Budak, Hueseyin .
TURKISH JOURNAL OF MATHEMATICS, 2023, 47 (02) :590-607
[38]   Dynamic Hardy-Copson-Type Inequalities via (γ, a)-Nabla-Conformable Derivatives on Time Scales [J].
El-Deeb, Ahmed A. ;
Makharesh, Samer D. ;
Awrejcewicz, Jan ;
Agarwal, Ravi P. .
SYMMETRY-BASEL, 2022, 14 (09)
[39]   Some Generalizations of Novel (Δ backward difference )Δ-Gronwall-Pachpatte Dynamic Inequalities on Time Scales with Applications [J].
El-Deeb, Ahmed A. ;
Baleanu, Dumitru .
SYMMETRY-BASEL, 2022, 14 (09)
[40]   Some Steffensen-type dynamic inequalities on time scales [J].
El-Deeb, A. A. ;
El-Sennary, H. A. ;
Khan, Zareen A. .
ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)