Some generalizations of dynamic Opial-type inequalities in conformable calculus

被引:0
作者
Khamis, Fatma M. [1 ]
El-Sheikh, M. M. A. [2 ]
Abdeljawad, Thabet [3 ,4 ,5 ,6 ]
Mukheimer, Aiman [3 ]
Ismail, Gamal A. F. [1 ]
机构
[1] Ain Shams Univ, Fac Women Art Sci & Educ, Dept Math, Cairo, Egypt
[2] Menoufia Univ, Fac Sci, Dept Math & Comp Sci, Shibin Al Kawm, Egypt
[3] Prince Sultan Univ, Dept Math & Sci, Riyadh 11586, Saudi Arabia
[4] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[5] Gulf Univ Sci & Technol, Ctr Appl Math & Bioinformat CAMB, Hawally 32093, Kuwait
[6] Sefako Makgatho Hlth Sci Univ, Dept Math & Applield Math, ZA-0204 Garankuwa, South Africa
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2024年 / 2024卷 / 01期
关键词
Opial-type inequality; Dynamic inequality; H & ouml; lder inequality; Conformable fractional calculus; FRACTIONAL CALCULUS;
D O I
10.1186/s13660-024-03224-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider generalized conformable integrals to establish new Opial-type inequalities. The obtained results mainly depend on H & ouml;lder's inequality, some algebraic inequalities, and a simple consequence of Keller's chain rule on time scales. Our obtained results unify and extend some continuous and discrete inequalities. In the special case alpha=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha = 1$\end{document}, our results cover some well-known inequalities of Opial-type on time scales.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Some Leindler-type inequalities on conformable fractional integrals
    Saker, S. H.
    Ashry, G. M.
    Kenawy, M. R.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2024, 32 (03): : 201 - 212
  • [22] Some new dynamic Opial type inequalities and applications for second order integro-differential dynamic equations on time scales
    Li, Lianzhong
    Han, Maoan
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 232 : 542 - 547
  • [23] Relations for m-generalized order statistics via an Opial-type inequality
    Goroncy, Agnieszka
    Kamps, Udo
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (06) : 1457 - 1463
  • [24] Two Weighted Higher-Order Dynamic Inequalities of Opial Type with Two Functions
    M. M. Osman
    S. H. Saker
    D. R. Anderson
    Qualitative Theory of Dynamical Systems, 2022, 21
  • [25] Two Weighted Higher-Order Dynamic Inequalities of Opial Type with Two Functions
    Osman, M. M.
    Saker, S. H.
    Anderson, D. R.
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (03)
  • [26] SOME NEW DISCRETE INEQUALITIES OF OPIAL WITH TWO SEQUENCES
    Xu Han
    Sha Li
    Qiaoluan Li
    Annals of Applied Mathematics, 2018, 34 (04) : 376 - 382
  • [27] Fractional Opial Type Inequalities and Fractional Differential Equations
    Anastassiou G.A.
    Goldstein J.A.
    Results in Mathematics, 2002, 41 (3-4) : 197 - 212
  • [28] Dynamic Opial diamond-α integral inequalities involving the power of a function
    Tatjana Z Mirković
    Journal of Inequalities and Applications, 2017
  • [29] Fractional Reverse Coposn's Inequalities via Conformable Calculus on Time Scales
    Zakarya, Mohammed
    Altanji, Mohamed
    AlNemer, Ghada
    Abd El-Hamid, Hoda A.
    Cesarano, Clemente
    Rezk, Haytham M.
    SYMMETRY-BASEL, 2021, 13 (04):
  • [30] Continuous form of the Opial-type inequalities for the Riemann-Liouville fractional derivatives involving two functionsContinuous form of...L. Nikolova, S. Varošanec
    Ludmila Nikolova
    Sanja Varošanec
    Analysis and Mathematical Physics, 2025, 15 (3)