Some generalizations of dynamic Opial-type inequalities in conformable calculus

被引:0
作者
Khamis, Fatma M. [1 ]
El-Sheikh, M. M. A. [2 ]
Abdeljawad, Thabet [3 ,4 ,5 ,6 ]
Mukheimer, Aiman [3 ]
Ismail, Gamal A. F. [1 ]
机构
[1] Ain Shams Univ, Fac Women Art Sci & Educ, Dept Math, Cairo, Egypt
[2] Menoufia Univ, Fac Sci, Dept Math & Comp Sci, Shibin Al Kawm, Egypt
[3] Prince Sultan Univ, Dept Math & Sci, Riyadh 11586, Saudi Arabia
[4] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[5] Gulf Univ Sci & Technol, Ctr Appl Math & Bioinformat CAMB, Hawally 32093, Kuwait
[6] Sefako Makgatho Hlth Sci Univ, Dept Math & Applield Math, ZA-0204 Garankuwa, South Africa
关键词
Opial-type inequality; Dynamic inequality; H & ouml; lder inequality; Conformable fractional calculus; FRACTIONAL CALCULUS;
D O I
10.1186/s13660-024-03224-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider generalized conformable integrals to establish new Opial-type inequalities. The obtained results mainly depend on H & ouml;lder's inequality, some algebraic inequalities, and a simple consequence of Keller's chain rule on time scales. Our obtained results unify and extend some continuous and discrete inequalities. In the special case alpha=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha = 1$\end{document}, our results cover some well-known inequalities of Opial-type on time scales.
引用
收藏
页数:15
相关论文
共 50 条
[21]   Some Generalizations of Dynamic Hardy-Knopp-Type Inequalities on Time Scales [J].
El-Deeb, Ahmed A. .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (05)
[22]   Some Leindler-type inequalities on conformable fractional integrals [J].
Saker, S. H. ;
Ashry, G. M. ;
Kenawy, M. R. .
JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2024, 32 (03) :201-212
[23]   Some new dynamic Opial type inequalities and applications for second order integro-differential dynamic equations on time scales [J].
Li, Lianzhong ;
Han, Maoan .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 232 :542-547
[24]   Relations for m-generalized order statistics via an Opial-type inequality [J].
Goroncy, Agnieszka ;
Kamps, Udo .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (06) :1457-1463
[25]   Two Weighted Higher-Order Dynamic Inequalities of Opial Type with Two Functions [J].
Osman, M. M. ;
Saker, S. H. ;
Anderson, D. R. .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (03)
[26]   Two Weighted Higher-Order Dynamic Inequalities of Opial Type with Two Functions [J].
M. M. Osman ;
S. H. Saker ;
D. R. Anderson .
Qualitative Theory of Dynamical Systems, 2022, 21
[27]   SOME NEW DISCRETE INEQUALITIES OF OPIAL WITH TWO SEQUENCES [J].
Xu Han ;
Sha Li ;
Qiaoluan Li .
Annals of Applied Mathematics, 2018, 34 (04) :376-382
[28]   Fractional Opial Type Inequalities and Fractional Differential Equations [J].
Anastassiou G.A. ;
Goldstein J.A. .
Results in Mathematics, 2002, 41 (3-4) :197-212
[29]   ON CONFORMABLE FRACTIONAL NEWTON-TYPE INEQUALITIES [J].
Xu, Hongyan ;
Awan, Muhammad uzair ;
Meftah, Badreddine ;
Jarad, Fahd ;
Lakhdari, Abdelghani .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2025,
[30]   Dynamic Opial diamond-α integral inequalities involving the power of a function [J].
Tatjana Z Mirković .
Journal of Inequalities and Applications, 2017