Some generalizations of dynamic Opial-type inequalities in conformable calculus

被引:0
|
作者
Khamis, Fatma M. [1 ]
El-Sheikh, M. M. A. [2 ]
Abdeljawad, Thabet [3 ,4 ,5 ,6 ]
Mukheimer, Aiman [3 ]
Ismail, Gamal A. F. [1 ]
机构
[1] Ain Shams Univ, Fac Women Art Sci & Educ, Dept Math, Cairo, Egypt
[2] Menoufia Univ, Fac Sci, Dept Math & Comp Sci, Shibin Al Kawm, Egypt
[3] Prince Sultan Univ, Dept Math & Sci, Riyadh 11586, Saudi Arabia
[4] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[5] Gulf Univ Sci & Technol, Ctr Appl Math & Bioinformat CAMB, Hawally 32093, Kuwait
[6] Sefako Makgatho Hlth Sci Univ, Dept Math & Applield Math, ZA-0204 Garankuwa, South Africa
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2024年 / 2024卷 / 01期
关键词
Opial-type inequality; Dynamic inequality; H & ouml; lder inequality; Conformable fractional calculus; FRACTIONAL CALCULUS;
D O I
10.1186/s13660-024-03224-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider generalized conformable integrals to establish new Opial-type inequalities. The obtained results mainly depend on H & ouml;lder's inequality, some algebraic inequalities, and a simple consequence of Keller's chain rule on time scales. Our obtained results unify and extend some continuous and discrete inequalities. In the special case alpha=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha = 1$\end{document}, our results cover some well-known inequalities of Opial-type on time scales.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Generalizations of some weighted Opial-type inequalities in conformable calculus
    Saker, S. H.
    Ashry, G. M.
    Kenawy, M. R.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2023, 30 (01): : 30 - 37
  • [2] Some new Opial-type inequalities
    Brnetic, I
    Pecaric, J
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 1998, 1 (03): : 385 - 390
  • [3] Weighted dynamic inequalities of Opial-type on time scales
    A. A. El-Deeb
    Fatma M. Kh
    Gamal A. F. Ismail
    Zareen A. Khan
    Advances in Difference Equations, 2019
  • [4] Weighted dynamic inequalities of Opial-type on time scales
    El-Deeb, A. A.
    Kh, Fatma M.
    Ismail, Carnal A. F.
    Khan, Zareen A.
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [5] Reduction of Opial-type inequalities to norm inequalities
    Sinnamon, G
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (02) : 375 - 379
  • [6] A Variety of Weighted Opial-Type Inequalities with Applications for Dynamic Equations on Time Scales
    Almarri, Barakah
    Makarish, Samer D.
    El-Deeb, Ahmed A.
    SYMMETRY-BASEL, 2023, 15 (05):
  • [7] Some opial-type inequalities with higher order delta derivatives on time scales
    El-Deeb, A. A.
    El-Sennary, H. A.
    Agarwal, Praveen
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 114 (01)
  • [8] Some opial-type inequalities with higher order delta derivatives on time scales
    A. A. El-Deeb
    H. A. El-Sennary
    Praveen Agarwal
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [9] New aspects of Opial-type integral inequalities
    Basci, Yasemin
    Baleanu, Dumitru
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [10] New aspects of Opial-type integral inequalities
    Yasemin Başcı
    Dumitru Baleanu
    Advances in Difference Equations, 2018