Some Results on Oblique Dual and Approximate Oblique Dual Hilbert-Schmidt Frames

被引:0
作者
Tian, Yu [1 ]
Zhang, Wei [2 ]
机构
[1] Zhengzhou Univ Light Ind, Dept Math & Informat Sci, Zhengzhou, Henan, Peoples R China
[2] Henan Univ Econ & Law, Sch Math & Informat Sci, Zhengzhou 450046, Peoples R China
基金
中国国家自然科学基金;
关键词
Approximate dual frames; HS-frames; oblique dual frames; GABOR FRAMES; RIESZ BASES;
D O I
10.1080/01630563.2024.2423247
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The concept of Hilbert-Schmidt frames (HS-frames) is more general than that of g-frames. In this paper, we investigate the oblique dual (OD) and epsilon-approximate oblique dual (epsilon-AOD) HS-frames on closed subspaces W and V of a separable Hilbert space H. We first introduce the concepts of OD and epsilon-AOD HS-frames. Then we present some conditions for a pair of OD and epsilon-AOD HS-frames to be symmetric. We also obtain the algebraic formula for all OD and epsilon-AOD HS-frames on V for a given HS-frame in W. As application, we get the canonical OD HS-frame has a minimum norm among all the representations of elements in W. We also discuss the perturbations of epsilon-AOD HS-frames. Finally, applying our results, we not only recover some known results but also derive a new result in the classical Hilbert space frame setting.
引用
收藏
页码:68 / 87
页数:20
相关论文
共 36 条
[11]  
Christensen O., 2016, INTRO FRAMES RIESZ B
[12]   From dual pairs of Gabor frames to dual pairs of wavelet frames and vice versa [J].
Christensen, Ole ;
Goh, Say Song .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2014, 36 (02) :198-214
[13]   BIORTHOGONAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
COHEN, A ;
DAUBECHIES, I ;
FEAUVEAU, JC .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (05) :485-560
[14]   PAINLESS NONORTHOGONAL EXPANSIONS [J].
DAUBECHIES, I ;
GROSSMANN, A ;
MEYER, Y .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (05) :1271-1283
[15]   Approximate oblique dual frames [J].
Diaz, Jorge P. ;
Heineken, Sigrid B. ;
Morillas, Patricia M. .
APPLIED MATHEMATICS AND COMPUTATION, 2023, 452
[16]   Duality principles in Hilbert-Schmidt frame theory [J].
Dong, Jian ;
Li, Yun-Zhang .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (06) :4888-4906
[17]   A CLASS OF NONHARMONIC FOURIER SERIES [J].
DUFFIN, RJ ;
SCHAEFFER, AC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 72 (MAR) :341-366
[18]   General framework for consistent sampling in Hilbert spaces [J].
Eldar, YC ;
Werther, T .
INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2005, 3 (04) :497-509
[19]   Sampling with arbitrary sampling and reconstruction spaces and oblique dual frame vectors [J].
Eldar, YC .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2003, 9 (01) :77-96
[20]   Construction of approximate dual wavelet frames [J].
Feichtinger, Hans G. ;
Onchis, Darian M. ;
Wiesmeyr, Christoph .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2014, 40 (01) :273-282