Some Results on Oblique Dual and Approximate Oblique Dual Hilbert-Schmidt Frames

被引:0
作者
Tian, Yu [1 ]
Zhang, Wei [2 ]
机构
[1] Zhengzhou Univ Light Ind, Dept Math & Informat Sci, Zhengzhou, Henan, Peoples R China
[2] Henan Univ Econ & Law, Sch Math & Informat Sci, Zhengzhou 450046, Peoples R China
基金
中国国家自然科学基金;
关键词
Approximate dual frames; HS-frames; oblique dual frames; GABOR FRAMES; RIESZ BASES;
D O I
10.1080/01630563.2024.2423247
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The concept of Hilbert-Schmidt frames (HS-frames) is more general than that of g-frames. In this paper, we investigate the oblique dual (OD) and epsilon-approximate oblique dual (epsilon-AOD) HS-frames on closed subspaces W and V of a separable Hilbert space H. We first introduce the concepts of OD and epsilon-AOD HS-frames. Then we present some conditions for a pair of OD and epsilon-AOD HS-frames to be symmetric. We also obtain the algebraic formula for all OD and epsilon-AOD HS-frames on V for a given HS-frame in W. As application, we get the canonical OD HS-frame has a minimum norm among all the representations of elements in W. We also discuss the perturbations of epsilon-AOD HS-frames. Finally, applying our results, we not only recover some known results but also derive a new result in the classical Hilbert space frame setting.
引用
收藏
页码:68 / 87
页数:20
相关论文
共 36 条
[1]   Dynamical sampling for shift-preserving operators [J].
Aguilera, A. ;
Cabrelli, C. ;
Carbajal, D. ;
Paternostro, V. .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2021, 51 :258-274
[2]   A characterization of affine dual frames in L2 (Rn) [J].
Bownik, M .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2000, 8 (02) :203-221
[3]   Continuous Curvelet Transform -: II.: Discretization and frames [J].
Candès, EJ ;
Donoho, DL .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2005, 19 (02) :198-222
[4]   Harmonic analysis of neural networks [J].
Candès, EJ .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1999, 6 (02) :197-218
[5]  
Casazza P., 2004, Contemp. Math., V345, P87, DOI [10.1090/conm/345/06242, DOI 10.1090/conm/345/06242]
[6]   Fusion frames and distributed processing [J].
Casazza, Peter G. ;
Kutyniok, Gitta ;
Li, Shidong .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2008, 25 (01) :114-132
[7]   The art of frame theory [J].
Casazza, PG .
TAIWANESE JOURNAL OF MATHEMATICS, 2000, 4 (02) :129-201
[8]   Approximate Oblique Dual g-Frames for Closed Subspaces of Hilbert Spaces [J].
Chi, Xiujiao ;
Li, Pengtong .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (04)
[9]  
Christensen Ole, 2010, Sampling Theory in Signal and Image Processing, V9, P77
[10]   Oblique dual frames and shift-invariant spaces [J].
Christensen, O ;
Eldar, YC .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2004, 17 (01) :48-68