Segmentation for mammography classification utilizing deep convolutional neural network

被引:1
|
作者
Kumar Saha, Dip [1 ]
Hossain, Tuhin [2 ]
Safran, Mejdl [3 ]
Alfarhood, Sultan [3 ]
Mridha, M. F. [4 ]
Che, Dunren [5 ]
机构
[1] Stamford Univ Bangladesh, Dept Comp Sci & Engn, Dhaka, Bangladesh
[2] Jahangirnagar Univ Savar, Dept Comp Sci & Engn, Dhaka, Bangladesh
[3] King Saud Univ, Coll Comp & Informat Sci, Dept Comp Sci, Riyadh 11543, Saudi Arabia
[4] Amer Int Univ Bangladesh, Dept Comp Sci, Dhaka, Bangladesh
[5] Texas A&M Univ Kingsville, Dept Elect Engn & Comp Sci, Kingsville, TX 78363 USA
来源
BMC MEDICAL IMAGING | 2024年 / 24卷 / 01期
关键词
Mammography; Breast cancer; Segmentation; Classification; SAM; CANCER;
D O I
10.1186/s12880-024-01510-2
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
BackgroundMammography for the diagnosis of early breast cancer (BC) relies heavily on the identification of breast masses. However, in the early stages, it might be challenging to ascertain whether a breast mass is benign or malignant. Consequently, many deep learning (DL)-based computer-aided diagnosis (CAD) approaches for BC classification have been developed.MethodsRecently, the transformer model has emerged as a method for overcoming the constraints of convolutional neural networks (CNN). Thus, our primary goal was to determine how well an improved transformer model could distinguish between benign and malignant breast tissues. In this instance, we drew on the Mendeley data repository's INbreast dataset, which includes benign and malignant breast types. Additionally, the segmentation anything model (SAM) method was used to generate the optimized cutoff for region of interest (ROI) extraction from all mammograms. We implemented a successful architecture modification at the bottom layer of a pyramid transformer (PTr) to identify BC from mammography images.ResultsThe proposed PTr model using a transfer learning (TL) approach with a segmentation technique achieved the best accuracy of 99.96% for binary classifications with an area under the curve (AUC) score of 99.98%, respectively. We also compared the performance of the proposed model with other transformer model vision transformers (ViT) and DL models, MobileNetV3 and EfficientNetB7, respectively.ConclusionsIn this study, a modified transformer model is proposed for BC prediction and mammography image classification using segmentation approaches. Data segmentation techniques accurately identify the regions affected by BC. Finally, the proposed transformer model accurately classified benign and malignant breast tissues, which is vital for radiologists to guide future treatment.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Improving automated latent fingerprint detection and segmentation using deep convolutional neural network
    Megha Chhabra
    Kiran Kumar Ravulakollu
    Manoj Kumar
    Abhay Sharma
    Anand Nayyar
    Neural Computing and Applications, 2023, 35 : 6471 - 6497
  • [42] Deep convolutional neural network and emotional learning based breast cancer detection using digital mammography
    Chouhan, Naveed
    Khan, Asifullah
    Shah, Jehan Zeb
    Hussnain, Mazhar
    Khan, Muhammad Waleed
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 132
  • [43] Segmentation of glioma tumors in brain using deep convolutional neural network
    Hussain, Saddam
    Anwar, Syed Muhammad
    Majid, Muhammad
    NEUROCOMPUTING, 2018, 282 : 248 - 261
  • [44] The skin cancer classification using deep convolutional neural network
    Dorj, Ulzii-Orshikh
    Lee, Keun-Kwang
    Choi, Jae-Young
    Lee, Malrey
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (08) : 9909 - 9924
  • [45] Golf Swing Data Classification with Deep Convolutional Neural Network
    Jiao Libin
    Bie Rongfang
    Wu Hao
    Wei Yu
    Kos, Anton
    Umek, Anton
    IPSI BGD TRANSACTIONS ON INTERNET RESEARCH, 2018, 14 (01):
  • [46] Shape-Aware Deep Convolutional Neural Network for Vertebrae Segmentation
    Al Arif, S. M. Masudur Rahman
    Knapp, Karen
    Slabaugh, Greg
    COMPUTATIONAL METHODS AND CLINICAL APPLICATIONS IN MUSCULOSKELETAL IMAGING, MSKI 2017, 2018, 10734 : 12 - 24
  • [47] Brain Tumor Segmentation using Cascaded Deep Convolutional Neural Network
    Hussain, Saddam
    Anwar, Syed Muhammad
    Majid, Muhammad
    2017 39TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2017, : 1998 - 2001
  • [48] Deep Convolutional Neural Networks for Heart Sound Segmentation
    Renna, Francesco
    Oliveira, Jorge
    Coimbra, Miguel T.
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2019, 23 (06) : 2435 - 2445
  • [49] A new triplet convolutional neural network for classification of lesions on mammograms
    Merati M.
    Mahmoudi S.
    Chenine A.
    Chikh M.A.
    Revue d'Intelligence Artificielle, 2019, 33 (03) : 213 - 217
  • [50] Representation learning for mammography mass lesion classification with convolutional neural networks
    Arevalo, John
    Gonzalez, Fabio A.
    Ramos-Pollan, Raul
    Oliveira, Jose L.
    Guevara Lopez, Miguel Angel
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2016, 127 : 248 - 257