A priori estimates and Liouville-type theorems for the semilinear parabolic equations involving the nonlinear gradient source

被引:1
作者
Liang, Wenguo [1 ]
Zhang, Zhengce [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
关键词
ELLIPTIC-EQUATIONS; BLOWUP RATE; SUPERLINEAR PROBLEMS; ASYMPTOTIC-BEHAVIOR; DIRICHLET PROBLEM; LOCAL BEHAVIOR; SINGULARITY;
D O I
10.1007/s00526-024-02907-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the local and global properties of nonnegative solutions for semilinear heat equation u(t)-Delta u=u(p)+M|del u|(q) in Omega xI subset of R(N)xR, where M>0, and p,q>1. We first establish the local pointwise gradient estimates when q is subcritical, critical and supercritical with respect to p. With these estimates, we can prove the parabolic Liouville-type theorems for time-decreasing ancient solutions. Next, we use Gidas-Spruck type integral methods to prove the Liouville-type theorem for the entire solutions when q is critical. Finally, as an application of the Liouville-type theorem, we use the doubling lemma to derive universal priori estimates for local solutions of parabolic equations with general nonlinearities. Our approach relies on a parabolic differential inequality containing a suitable auxiliary function rather than Keller-Osserman type inequality, which allows us to generalize and extend the partial results of the elliptic equation (Bidaut-V & eacute;ron et al. in Math. Ann. 378(1-2):13-56, 2020) to the parabolic case.
引用
收藏
页数:27
相关论文
共 38 条
[1]  
Alessio P, 2006, ADV NONLINEAR STUD, V6, P351
[2]   Gradient blow-up rates and sharp gradient estimates for diffusive Hamilton-Jacobi equations [J].
Attouchi, Amal ;
Souplet, Philippe .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (05)
[3]  
Attouchi A, 2016, DIFFER INTEGRAL EQU, V29, P137
[4]   On the generalized Dirichlet problem for viscous Hamilton-Jacobi equations [J].
Barles, G ;
Da Lio, F .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2004, 83 (01) :53-75
[5]   THE DIRICHLET PROBLEM FOR SEMILINEAR 2ND-ORDER DEGENERATE ELLIPTIC-EQUATIONS AND APPLICATIONS TO STOCHASTIC EXIT TIME CONTROL-PROBLEMS [J].
BARLES, G ;
BURDEAU, J .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (1-2) :129-178
[6]  
Bidaut-Veron M.-F., 1998, Equations aux derivees partielles et applications, P189
[7]   Local behaviour of the solutions of the Chipot-Weissler equation [J].
Bidaut-Veron, Marie-Francoise ;
Veron, Laurent .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (09)
[8]   A priori estimates for elliptic equations with reaction terms involving the function and its gradient [J].
Bidaut-Veron, Marie-Francoise ;
Garcia-Huidobro, Marta ;
Veron, Laurent .
MATHEMATISCHE ANNALEN, 2020, 378 (1-2) :13-56
[9]  
BidautVeron MF, 1996, COMMUN PART DIFF EQ, V21, P1035
[10]   ASYMPTOTIC SYMMETRY AND LOCAL BEHAVIOR OF SEMILINEAR ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV GROWTH [J].
CAFFARELLI, LA ;
GIDAS, B ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (03) :271-297